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Abstract

In this paper we consider the problem of monitoring Poisson rates when the population

sizes are time-varying and the nominal value of the process parameter is unavailable. Almost

all previous control schemes for the detection of increases in the Poisson rate in Phase II are

constructed based on assumed knowledge of the process parameters, e.g., the expectation of

the count of a rare event when the process of interest is in control. In practice, however, this

parameter is usually unknown and not able to be estimated with a sufficiently large number

of reference samples. A self-starting EWMA control scheme based on a parametric bootstrap

method is proposed. The success of the proposed method lies in the use of probability control

limits, which are determined based on the observations during rather than before monitoring.

Simulation studies show that our proposed scheme has good in-control and out-of-control per-

formance under various situations. In particular, our proposed scheme is useful in rare event

studies during the start-up stage of a monitoring process.

Keywords: Average run length; Healthcare surveillance; Poisson process; Probability control

limits
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1 Introduction

In recent studies of statistical process control (SPC), monitoring the occurrence rate of a rare event

from a sequence of counts has been one of the hot issues, e.g., the detection of changes in the rate of

nonconformities in precise machining and manufacturing. In particular, in healthcare surveillance,

interest is in detecting an increase in the mortality/incidence rates in primary care (Aylin et al.

2003), and the number of cancer patients (Krieger 2008; Han et al. 2010).

To detect changes in the occurrence rate of an adverse event, one usually assumes that the

counts of events are (conditionally) independent Poisson random variables given the correspond-

ing sample size. When the sample size is a constant, detecting a change in the rate is equivalent

to detecting a change in the Poisson mean. Various control schemes developed for such a case can

be found in Lucas (1985), Frisén and De Maŕe (1991) and White and Keats (1996). In healthcare

surveillance, however, the sample sizes (i.e., the population sizes) are often time-varying. Increas-

ing attention has thus been paid to the problem of monitoring the occurrence rate of an adverse

event with time-varying sample sizes in prospective analysis (called Phase II). Related studies

have been reported by Dong et al. (2008), Mei et al. (2010), Ryan and Woodall (2010), Shu et al.

(2011), Zhou et al. (2012) and Shen et al. (2013). For a review of surveillance of nonhomogeneous

Poisson processes, one may refer to Purdy et al. (2015).

All of these prior works have been primarily focused on the Phase II study with the assumption

that the in-control (IC) value of the parameter, e.g., the occurrence rate, can be exactly known

or accurately estimated based on a sufficient number of historical observations. Unfortunately, in

many applications, there is no such information available and the monitoring of a Poisson process

is to be activated at the start-up stage, i.e., the historical records for the estimation may be very

limited. Recent literature reviews by Jensen et al. (2006) and Psarakis et al. (2014) provided
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thorough discussions of the effects of parameter estimation on control-chart performance. See also

Testik (2007) and Castagliola and Wu (2012) for monitoring Poisson data when the parameters

are estimated. They concluded that use of control charts with estimated parameters can produce a

large bias in the IC average run length (ARL) when the number of reference samples is small and

reduce the sensitivity of the chart in detecting process changes as measured by the out-of-control

(OC) ARL. In many cases, it may not be feasible to wait for the accumulation of sufficiently large

samples because the users want to monitor the process at the start-up stages. Therefore, a control

scheme is required for monitoring the Poisson rate with limited historical information.

When it comes to the situation that sufficient information for parameter estimation is unavail-

able, self-starting methods are often used that update the parameter estimates along with new obser-

vations and simultaneously check for the OC conditions. Hawkins (1987) developed self-starting

CUSUM charts for univariate normal data, and Quesenbery (1991a, 1995) discussed Shewhart

equivalents. Later on, Quesenberry (1997), Schaffer (1998), Sullivan and Jones (2002), Hawkins

and Maboudou-Tchao (2007) and Capizzi and Masarotto (2010) proposed self-starting charts for

multivariate applications. Zou et al. (2007) further extended the self-starting technique to the ap-

plication of profile monitoring. For monitoring of Poisson rates, control schemes were proposed by

Quesenberry (1991b) and Hawkins and Olwell (1998). As we will show, Quesenberry’s method is

associated with an unsatisfactory IC ARL performance when the expectation of the Poisson counts

is not sufficiently large. The method proposed by Hawkins and Olwell (1998) has satisfactory IC

and OC ARL performance, but it is only applicable for the monitoring of Poisson rates when the

sample sizes are constant over time. Its extension to the case with time-varying sample sizes is not

straightforward, requiring careful consideration in the future. The main difficulty of designing an

appropriate self-starting chart is that the control limit is difficult to determine without a pivotal test

statistic when the process observations are Poisson distributed. In other words, in monitoring of a

Poisson process, the IC distribution of charting statistics is usually not free of the underlying Pois-
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son rate and thus the control limit is difficult to determine in order to obtain a desired IC average

run-length and a satisfactory OC average run-length.

To this end, we propose a self-starting exponentially weighted moving average (EWMA) con-

trol scheme for monitoring the occurrence rate of an adverse event when the IC Poisson process

parameter is not known. In the proposed control scheme, it is not necessary to collect a large

number of Phase I observations before the monitoring is activated (although it still requires one to

collect a few preliminary samples). Similar to Shen et al. (2013), probability control limits, which

are determined at each time point after observing the sample size, are used for the monitoring.

Because we are considering the problem of unknown process parameters, the probability control

limits can no longer be determined based on the methods provided by Shen et al. (2013), which

require knowledge of the IC Poisson process. Therefore, a parametric bootstrap approach is devel-

oped for determining appropriate control limits. The proposed monitoring scheme has satisfactory

average IC performance even when the reference sample is extremely small, which indicates good

potential for its application. Although only the EWMA-type self-starting control chart is discussed

in this paper, our ideas can be applied to any other competing control charts such as Shewhart

charts and CUSUM charts.

The remainder of this paper is presented as follows. In Section 2, we first discuss the statistical

assumptions and review some related work, then the model is formally defined and the proposed

methodology is presented. Performance studies are reported in Section 3, followed by a demon-

stration of the proposed control scheme in a specific healthcare surveillance example. Finally, we

conclude the paper with some discussion in Section 5.
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2 Self-starting charts for monitoring Poisson rates

2.1 Model assumptions

Let Xt be the count of an adverse event during the fixed time period (t − 1, t]. For simplicity, we

will call it the count of the event at timet. Suppose theXt values independently follow the Poisson

distribution with the meanθnt conditional onnt, whereθ andnt denote the occurrence rate of the

event and sample size at timet, respectively. To detect an abrupt change in the occurrence rate from

θ0 to another unknown valueθ1 > θ0 at some unknown timeτ, it is usually assumed that there are

m0 independent historical (reference) observations,{(Xi ,ni)}0i=−m0+1, and theith future observation,

Xi, is collected over time following the change-point model

Xi
i.d.∼





Poisson(θ0ni |ni) for i = −m0 + 1, . . . , 0,1,2, . . . , τ − 1,

Poisson(θ1ni |ni) for i = τ, . . . ,

(1)

where the symboli.d.∼ means “independently distributed”. The objective is to detect the change as

soon as possible after it occurs by using the sequentially observed counts. In this study, we are

interested in the departures from stability taking the form of upward sustained shifts inθ when

assuming thatnt is a known value at each time pointt while θ0 andθ1 are not known exactly a

priori .

2.2 Existing work

We review four “off-the-shelf” procedures for the monitoring of the Poisson rates in this section.

Recall that in Phase II analysis the process parameter (e.g., the Poisson rate) is usually assumed

to be known or well estimated based on a sufficiently large number of reference samples. A tra-

5
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

T
ex

as
 A

 &
 M

 I
nt

er
na

tio
na

l U
ni

ve
rs

ity
] 

at
 1

2:
42

 1
8 

A
ug

us
t 2

01
5 



ACCEPTED MANUSCRIPT

ditional way, termed the “TR-1” method in the following, is to estimateθ0 with them0 historical

observations, i.e.,̂θ0 =
∑0

j=−m0+1 Xj/
∑0

j=−m0+1 nj. Then, we regard̂θ0 as the “true” parameter and

set up the monitoring scheme. When the historical data are very limited, i.e.,m0 is small, the es-

timate may significantly deviate from the true value. As a result, such a monitoring scheme may

have unsatisfactory performance.

Another benchmark is Shen et al.’s (2013) procedure (abbreviated as TR-2), in which proba-

bility control limits are considered. Those control limits are determined one-by-one during mon-

itoring. However, the value ofθ0 needs to be specified so that the probability control limitsht

(t = 1,2, . . .) can be determined through a simulation approach by generating the Poisson variables

with the rateθ0. Without knowledge ofθ0, we can only arbitrarily assume a value forθ0 (or one

estimated by using a few historical sample) and determine the probability control limits based on

the “true value” in such a monitoring scheme. As a result, the performance of this scheme depends

heavily on how close the estimated in-control value is to the value ofθ0.

In regard to the limited historical information, a normal approximation method was also sug-

gested by Quesenberry (1991b) for monitoring the Poisson rate. We call it the “TR-3” method

hereafter. In this method, observed Poisson counts are transformed to approximately standard

normally distributed variables. Specifically, the sequential observations (X1,n1), (X2,n2), . . . are

transformed toQ statistic by the following formulas,




ut = B(Xt; st,nt/Nt)

Qt = Φ−1(ut), for t = 1,2, . . . ,
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wherest =
∑t

k=1 Xk, Nt =
∑t

k=1 nt,

B(x; s, p) =





0, x < 0

1, x ≥ s

∑[x]
k=0 b(k; s, p), 0 ≤ x < n

and

b(x; s, p) =








s

x




px(1− p)s−x, x = 0,1, . . . , n,

0, otherwise.

These variablesQ1,Q2, . . . are independent and approximately normally distributed statistics given

the value ofθ̂0 and hence an EWMA monitoring scheme for standardized normal variables can

be applied directly. However, we show that the accuracy of the method depends heavily on the

values ofθ0nt and hence the ARL performance of the corresponding monitoring scheme cannot be

guaranteed, especially when the productsθ0nt are not sufficiently large.

In addition, another self-starting control scheme, termed the “TR-4” method, was proposed for

Poisson counts by Hawkins and Olwell (1998). In this method, Poisson counts are assumed to

follow the same distribution, i.e.,Xt ∼ Poisson(u0) for t = 1,2, . . ., while the in-control meanu0 is

unknown. If the process is in control, then

Xt ∼ Binomial(Wt,1/t),

where t is the sample size andWt =
∑t

i=1 Xi. A cumulative probability can then be obtained

as follows. LetAt = Pr[Bt ≤ Xt] whereBt ∼ Binomial(Wt,1/t). In order to convertAt to an

equivalent standardized form, one estimatesu0 using the average of the preliminary observations.

Suppose the estimator is ˆu0. ThenXt is transformed to a Poisson variateYt with parameter ˆu0 such
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that

min
Yt

∣∣∣∣∣∣∣

Yt∑

j=0

e−û0ûj
0

j!
− At

∣∣∣∣∣∣∣
.

We let Yt = Xt whenAt = 1. The Poisson variateYt is then monitored by the EWMA scheme.

Our simulation studies demonstrate that under the scenario of constant sample sizes, this scheme

has competitive IC and OC performances. However, its application is restricted to monitoring the

Poisson rates with constant sample size. When the population size is time-varying, it is clear that

the arguments above do not hold. Our simulation (not reported here but available from authors)

show that some “naive” modifications cannot yield satisfactory IC performances under the scenario

of time-varying sample sizes.

2.3 Proposed method

Recall that the monitoring of the Poisson count data is activated at timet = 1 with m0 historical

counts of events. That is, at timet = 0, there have beenm0 paired observations recorded as
{
(X−m0+1,n−m0+1), . . . , (X0,n0)

}
. We letθ̂t represent the estimated occurrence rate at timet based on

the previous observations, i.e.,

θ̂t =

∑t−1
j=−m0+1 Xj

∑t−1
j=−m0+1 nj

, t = 1,2, . . . . (2)

Alternative estimates ofθt can also be used. For example,θ̂t can be a weighted average of the previ-

ous observations, assigning larger weights to later observations. Further we define the standardized

countsSt = (Xt − ntθ̂t)/
√

ntθ̂t and construct the EWMA-type charting statistics as

Zt = max{0, (1− λ)Zt−1 + λSt}, t = 1,2, . . . , (3)
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whereλ ∈ (0,1] is the smoothing parameter andZ0 = 0. Here, we use a reflecting barrier, as did

Ryan and Woodall (2010), to avoid inertia problems (Woodall and Mahmoud 2005). Clearly, when

the process occurs some change atτ, a large value ofZt would be used to trigger an alarm.

To construct a control chart, it is critical to determine the control limits so that a charting

scheme has satisfactory run-length behavior. As indicated by Hawkins and Maboudou-Tchao

(2007) and Qiu (2014; Chapter 6), it can be insufficient to summarize run-length behavior by

the ARL, especially for self-starting control charts. The IC run length distribution is usually con-

sidered to be satisfactory if it is close to the geometric distribution. A chart is usually unacceptable

if the specified IC ARL is obtained with an elevated probability of false alarms with short run

lengths as compared to a geometric distribution. An excessive number of false alarms would hurt

an operator’s confidence in valid alarms. To this end, we want to find the control limits so that

the conditional probability that the charting statistic exceeds the control limit at present, given that

there is no false alarm before the current time point, is a pre-specified constant. Letht be a sequence

of control limits. Theoretically, the control limitsht’s should satisfy the following equations,

Pr(Z1 > h1(α) | n1) = α,

Pr(Zt > ht(α) | Zi < hi(α), 1 ≤ i < t, nt) = α for t > 1, (4)

whereα is the pre-specified conditional false alarm rate.

This is somewhat analogous to performing a hypothesis test with the type-I errorα at each

time pointt. The approach of determining control limits to maintain a constant conditional false

alarm rate was originally proposed by Margavio et al. (1995) and has been used by Hawkins et al.

(2003). Zou and Tsung (2010) gave a related discussion. Traditionally, the dynamic control limits

can be obtained by using a Markov chain approximation or Monte Carlo simulation techniques

because the charting statistics considered in the literature are usually pivotal quantities.
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However, as we have indicated in Section 1, it is not easy to approximateht(α) because the IC

distributions ofZt’s (givennt) depend on the parameterθ0. To this end, we propose to use a para-

metric bootstrap iteratively. That is, at each time pointt, we generate pseudo Poisson observations

with the expectationntθ̂t and then findht by approximately controlling the probabilities in (4).

To clearly explain the proposed scheme, we first consider the monitoring at the time pointt = 1.

According to the observedn1 and the estimated occurrence rateθ̂1, whereθ̂1 =
∑0

j=−m0+1 Xj/
∑0

j=−m0+1 nj,

we are able to randomly generate pseudo observationsYi,1, wherei = 1,2, . . . ,N andN is a suf-

ficiently large integer, from Poisson(n1θ̂1) and have the correspondingSi,1 = (Yi,1 − n1θ̂1)/
√

n1θ̂1.

Then we can obtain a sample of pseudo charting statisticsR(1) = {R1(1),R2(1), . . . ,RN(1)}, where

Ri(1) = λSi,1. We let the elements inR(1) be ranked in ascending order to rewrite the vectorR(1)

as
(
R[1](1), . . . ,R[N] (1)

)
. Then we can useR[H] (1) to approximateh1(α), whereH = bN(1− α)c and

b c is the rounding symbol.

If Z1 > h1, X1 is declared to be OC and an alarm is triggered accordingly. Otherwise, we

continue the monitoring to the next time pointt = 2 and estimateθ2 based on̂θ1 and X1, i.e.,

θ̂2 =
(
θ̂1

∑0
j=−m0+1 nj + X1

)
/
∑1

j=−m0+1 nj. At time t = 2, to determine the control limith2, we first

should restrict the feasible values ofRi(1) to satisfy (4). More specifically, we keep a part ofR(1),
(
R[1](1), . . . ,R[H] (1)

)
, as the space of feasible values ofR[i] (1) and randomly bootstrapN variables

of Ri(1) from the space to make up an updatedN−dimensional vectorR(1). The control limith2 can

be similarly determined by repeating the process of random number generation of Poisson(n2θ̂2)

random variables.

The proposed procedure is summarized as follows.

1. If Zt−1 ≤ ht−1, estimatêθt based on the past observations{(X1,n1), . . . , (Xt−1,nt−1)}.

2. Randomly generateYi,t ∼ Poisson(ntθ̂t), i = 1, ∙ ∙ ∙ ,N, and obtainR(t) = {R1(t), . . . ,RN(t)},
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whereRi(t) = (1− λ)Ri(t − 1)+ λSi,t andSi,t = (Yi,t − ntθ̂t)/
√

ntθ̂t. After sorting the elements

of R(t) in ascending order, the control limit can be determined to be the value ofR[H] (t).

3. Compare the charting statisticZt with ht and decide whether the monitoring should be con-

tinued or not. If continuing to the next time point, update theR(t) by randomly selecting

Ri(t)’s from
(
R[1](t − 1), . . . ,R[H] (t − 1)

)
and go back to step 1 to estimateθ̂t+1.

The procedure described above can be considered as a parametric bootstrap method, with a

Poisson model as the parametric assumption and a resampling technique for approximating the

sampling distribution of the charting statistics. It should be emphasized here that our procedure

significantly differs from the approach of Margavio et al. (1995) and others in the sense that the

control limits in our procedure are determined on-line along with the process observations rather

than decided upon before monitoring. That is, our control limits are data-driven due to the use ofθ̂t

andnt at the time pointt. Due to the discreteness of the Poisson distribution, the conditional false

alarm probabilities will not generally be equal toα, but we will show that the approximations are

always close.

Although the proposed chart is a self-starting scheme in the sense that it can be implemented

at the start-up of a process, we believe that starting testing with anm0 that is too small is not a

good idea. A smallm0 value would result in a severe “masking-effect” if a short-run change occurs

(Hawkins et al. 2003). Rather, we suggest that a practitioner should gather a modest number of

observations through a Phase-I study and prior knowledge to obtain at least an initial verification

that the process is actually stable, and only then should the practitioner start formal charts. Jones-

Farmer et al. (2014) provided a discussion of the issues and benefits related to Phase I studies. Our

empirical results show that obtaining a satisfactory monitoring performance with our method may

require at least 20-40 IC observations (of course the more the better) before the change actually

occurs; this number also depends onθ0nt and shift magnitudes.

11
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

T
ex

as
 A

 &
 M

 I
nt

er
na

tio
na

l U
ni

ve
rs

ity
] 

at
 1

2:
42

 1
8 

A
ug

us
t 2

01
5 



ACCEPTED MANUSCRIPT

In comparison with other existing work, our proposed method requires a considerable amount

of computing time because our control limits are obtained on-line. Today’s computing power has

improved dramatically and it is computationally feasible to implement our proposed chart. The

computer codes implementing the proposed scheme in Fortran are available upon request.

3 Performance study

In order to investigate the performance of the proposed EWMA-type self-starting control scheme

and that of the traditional schemes with the limits determined based on some assumed values of

the process parameters, we report some simulation results in this section to show that (1) the TR-1,

TR-2, and TR-3 methods are not suitable because their charting statistics are not pivotal quantities

and hence their IC performance is not acceptable; (2) our proposed control scheme has satisfactory

performance and, when the sample sizes are constant, its performance is competitive to that of the

TR-4 method under the scenario of constant sample sizes; (3) The proposed method is effective for

the case with with varying population sizes.

3.1 IC performance

We first investigate the IC performance of our proposed scheme and that of the traditional control

schemes. Note that the factors related to the IC performance of the monitoring schemes are (1) the

number of historical observationsm0; (2) the smoothing parameterλ; (3) the sample size at each

time pointnt; and (4) the IC occurrence rateθ0. Sincent is known at timet, whether its value is

time-varying or constant does not impact the performance of our proposed control scheme. For

simplicity, we first assume thatnt is a constant value in the simulations. The performance of the
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control schemes with time-varying sample sizes will be presented at the end of this section.

In the first simulation study, we assess the influence of the amount of historical datam0 and

the smoothing parameterλ on the performance of the proposed control scheme under a specific

conditional false alarm rateα with a known constant value ofnt. Both the historical data and

the Poisson counts “observed” in the monitoring process are generated from the same Poisson

distribution with a specific value ofθ0. In each simulation trial, we determine the control limits

with the specific value of̂θ0, which is estimated based on the preliminary observations, and then

obtain one value of run length. Note that we do not obtain multiple values of run lengths based on

the same set of preliminary observations in this section or in Sections 3.2 and 3.4. The obtained

IC ARL value is actually a random variable depending on the preliminary observations. Hence,

we estimate the average IC ARL, termed “AARL0”, by repeatingM simulation trials (in each trial

we generate different preliminary observations). Performance of interest is then evaluated by this

AARL0. In our approach and for TR-2,N should be a sufficiently large value in order to determine

the appropriate probability control limits. We setθ0 = 1, nt = 20, α ∈ {0.005,0.002,0.001},

N = 20,000 andM = 2,000. Form0 ∈ {10,20,50,100} andλ ∈ {0.05,0.10,0.50,0.80}, we have

the estimated average IC ARLs (AARL0) recorded in Table 2, as well as the absolute relative error,

δ = |AARL0 − ARL0|/ARL0, where ARL0 is the nominal ARL.

The results presented in Table 2 indicate that the values of AARL0 associated with the TR-1 and

TR-2 methods depend heavily on both the number of historical observationsm0 and the smoothing

parameterλ. In particular, a largerλ value yields better average IC ARL performance for the two

methods. For each value ofλ, the performance of TR-1 and TR-2 can be improved significantly

by increasing the number of historical observations, which is consistent with our intuition. When

λ is large (e.g.,λ = 0.8), m0 = 100 is sufficient for the estimation ofθ0 in TR-2. However, for

the TR-1 method, the necessary amount of historical data increases along with the desired value

of ARL0. For example, withλ = 0.8, m0 = 50 is sufficient for the estimation ofθ0 when the

13
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

T
ex

as
 A

 &
 M

 I
nt

er
na

tio
na

l U
ni

ve
rs

ity
] 

at
 1

2:
42

 1
8 

A
ug

us
t 2

01
5 



ACCEPTED MANUSCRIPT

desired ARL0 is 200 (i.e.,α is equal to 0.005). However,m0 = 50 is far from enough data when

the desired ARL0 is 500 or 1000. As a result, we conclude that the TR-1 and TR-2 methods are not

suitable for monitoring activated at the start-up stage when the process parameter is unknown. The

performance of the TR-3 method is rarely impacted bym0 but depends significantly onλ. Similarly,

a largerλ value leads to better average IC ARL performance for the TR-3 method. However, for

the TR-3 method, its average IC ARLs are far from the desired value even with a large value ofλ

whenθ0nt = 20. We hence conclude that the performance of the TR-3 method is largely affected

by the values ofθ0nt, which will be further explored later in this section.

In contrast, the TR-4 method and our proposed control scheme have remarkable IC perfor-

mance. That is, the values of the average IC ARLs estimated for these two methods are close to the

desired value ARL0 for all listedm0 andλ. Even when the number of available observations is very

limited, e.g.,m0 = 10 in our simulation, the TR-4 method and the proposed control scheme can

provide us with satisfactory performance. Though the estimated AARL0 is a little bit different from

its desired value, its absolute relative error (δ) is always smaller than 0.1. The two methods are

thus considered to have potential in applications when large reference samples are not available.

Next we analyze the impact ofθ0 andnt on the performance of the proposed control scheme

when fixingm0 = 20 andλ = 0.1. We note that the performance of both the proposed control

scheme and the TR-2 method is actually not related to the sample sizent; see Shen et al. (2013)

for a discussion. The most significant difference between the two schemes is that the trueθ0 value

has to be known in the TR-2 method while it is not required in the proposed one. Accordingly,

the difference between the performance of the two schemes relies on how the estimated value of

θ0 is going to affect the probability control limits and further impact the performance of the TR-2

method. In the following simulation study, we setθ0 ∈ {0.1,1,5,10} andnt ∈ {20,200,2000}.

Other factors have the same values as the previous simulation study. The simulation results are

presented in Table 3.
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Let us first focus on the performance of the TR-1 and the TR-2 methods. In Table 3, we do

not observe any significant patterns between the values of the estimated AARL0 values and the

values of (θ0,nt). Hence we conclude that the values ofθ0 andnt do not play important roles in the

performance of the two methods. Next, we consider the TR-3 method. Its performance is signif-

icantly improved by increasing the value ofθ0 or that ofnt, as we have mentioned before. When

the productθ0nt is larger than or equal to 10,000, the average IC ARLs resulting from the TR-3

method are very close to the desired values (see the 5th, the 8th, and the 11th columns underθ0 = 5

andθ0 = 10 in Table 3) even whenm0 = 20 andλ = 0.1. As a result, we can conclude that the

control limits of the TR-3 method depend heavily on the values ofθ0nt. Satisfactory performance

may be expected for TR-3 when the count of occurrence (represented byθ0nt) is sufficiently large.

This is not surprising, but its performance becomes significantly worse when the productθ0nt is

small. In other words, the TR-3 method should not be applied in the case of rare events. Note that,

for a Binomial distribution, its normal approximation should work quite well when the binomial

mean (i.e.,θ0nt) is larger than 10. However, according to our simulation study, the TR-3 method is

effective only when the count of occurrence is larger than 2000. We then explain the failure of the

TR-3 method as follows when the count of occurrence is not sufficiently large. Recall that in the

TR-3 method we make the transformationQ = Φ−1(ut). The resultingQ is normally distributed

with a standard deviation close to 1 but an offset non-zero mean. The systematically wrong IC

mean leads to a quick OC signal in the cumulative charts, e.g., the EWMA chart. The problem

here lies on the “≤” in the binomial cumulative distribution function. Therefore, if we want to

resurrect the TR-3 method in our problem, applying a continuity correction with the TR-3 method

may be an effective way.

Now, turning our attention to the results corresponding to the TR-4 method and the proposed

control scheme, the simulated results indicate that the two methods both have stable performance

under different values ofθ0 andnt. In particular, their performance is very impressive when the
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expected count of occurrences is small, e.g.,θ0nt = 2. Again, with the two methods, the absolute

percentage error of the estimated average IC ARLs from the desired value is smaller than 10%.

Taking into account their IC performance in the previous simulation study, we can provide

a comprehensive evaluation of the TR-4 method and the proposed self-starting control scheme

as follows. First of all, the two methods have comparable IC performance when sample sizes

are constant. They are able to bring us robust and satisfactory IC run length performance under

various situations. Because of its robustness, the TR-4 method and the proposed scheme are much

better than (or competitive to) the other methods when there is not a sufficient number of reference

samples. Their advantage is even more prominent in the monitoring of rare events as shown by the

simulation results.

Thus far, all the presented simulations are based on a constantnt for simplicity. In the following,

we further show that the proposed control scheme also has good performance when sample sizes

are time-varying. Referring to the previous studies, the time-varying sample sizes are depicted

by three different scenarios based on two logistic models suggested by Mei et al. (2011) and one

uniform distribution model previously used by Ryan and Woodall (2010). Following the work by

Mei et al. (2011), we letc1 = 13.8065,c2 = 11.8532,c3 = 26.4037 and define the three scenarios

as

Scenario (A) The logistic model,nt = (20c1)/{1+exp[−(t−c2)/c3]}, is used to describe a scenario

of increasing time-varying sample sizes.

Scenario (B) The logistic model,nt = (c1/2.4)/{1 + exp[(t − c2)/c3]} + 18, is used to describe a

scenario of decreasing time-varying sample sizes.

Scenario (C) The time-varying sample sizes are uniformly distributed, i.e.,nt ∼ [15,20].
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For each scenario, we setλ = 0.1, m0 = 20,α = 0.005 andθ0 = (0.1,1,5,10). The performance

is presented in Table 4, which verifies the capability of the proposed control scheme to control the

average IC ARL when the sample sizes are time-varying.

3.2 OC performance

In this section, we study the OC performance of the proposed control scheme. For comparison,

we also apply the TR-4 method. The other three“off-the-shelf” procedures are not investigated

because of their unacceptable IC performance. We setm0 = 20 and assumeθ0, nt to be 1 and a

constant value of 20, respectively.

We investigated the OC performance under different OC conditions, i.e., the rate of event oc-

currence changes fromθ0 to θ1 at timeτ. By assumingτ = 21,41,λ = 0.1,0.5, and changing the

value ofθ1 from a low of 1.025 to a maximum of 1.5, we obtained the simulation results in Table 5.

The results indicate that, though the OC performance of our proposed control scheme is slightly

better than that of the TR-4 method, the two schemes in general have similar OC performance. We

thus conclude that, when sample sizes are constant over time, our proposed control scheme has

competitive IC and OC performance with the TR-4 method.

3.3 Conditional IC ARL

The investigated average IC ARLs in our simulation study are averaged over all possible sets of

historical observations. More specifically, for each set of historical data, one value of run length

was obtained and the estimated average IC ARL is an average of these run lengths. Therefore, the

average IC ARL we considered is actually the in-control expected ARL.
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However, as indicated by Saleh et al. (2015), Keefe et al. (2015), and others, the different

historical data sets practitioners use result in varying estimates, control limits, and their corre-

sponding IC ARLs. Hence the reliance on the expected IC ARL averages across the practitioner-

to-practitioner variability. Therefore, the variability of the IC ARLs corresponding to different

historical data sets should be kept at a low level in order to have a satisfactory in-control perfor-

mance.

To this end, in the following, we further conducted a simulation study to show that our proposed

control scheme is able to ensure low levels of variation in the IC ARL values among different histor-

ical data sets. We setnt = 20,θ0 = {0.1,1}, λ = 0.1, α = {0.005,0.002}, andm0 = {10,20,30,50}.

Under each setting, we generated 100 sets of historical observations. For each set, we simulated

400 charts and estimated the corresponding IC ARL. The average IC ARL (termed AARL) and

the standard deviation of IC ARL (termed SDARL) under each setting were estimated based on

the 100 IC ARLs. As Saleh et al. (2015) discussed, having SDARL values of a chart within 10%

of its intended in-control ARL value is reasonably good performance, although it still represents

significant variation.

Table 6, showing the AARL and SDARL under different settings, indicates that our proposed

control scheme is able to guarantee relatively small variation in the IC ARL values among different

historical data sets, even when the number of historical observations is very limited and the Poisson

mean is very small (e.g.,m0 = 10 andθ0 = 0.1). The reason is as follows. In our control scheme,

given a set of historical observations, we use an online parametric bootstrap to update the estimate

of θ0 based on the new observation at each time point. Hence, the control limit for the next time

point is determined based on all the available observations. The IC ARL corresponding to each

given set of historical data is hence close to its desired value under each setting, and accordingly a

relatively small value of SDARL is obtained with our scheme compared to estimating the Poisson

parameters on only the preliminary data.
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3.4 Effect of choice ofN on the proposed method

We have indicated thatN should be sufficiently large in our proposed method to obtain accurate

probability control limits, and hence we setN = 20,000 in our simulation studies. But how would

the value ofN affect the performance of our proposed control scheme? We investigated this ques-

tion through a simulation study. The parametersθ0, nt, andλ may affect the performance of our

proposed method under each value ofN. Hence, we fixm0 = 20 andα = 0.005 (E(ARL0) = 200).

For θ0 ∈ {1,5}, nt ∈ {20,200}, λ ∈ {0.10,0.40,0.80}, andN = {200,500,1000,2000,5000,10000},

we have estimated AARL0’s as well as the absolute relative error fromE(ARL0) recorded in Ta-

ble 7.

Table 7 indicates that, to obtain satisfactory probability control limits, the required value ofN

increases with the value ofλ, but has little relationship with the values ofθ0 andnt. Specifically,

N should be no smaller than 2000 whenλ = 0.1, but must be larger than 5000 whenλ = 0.80.

As a result, in applications, a largerN should be used whenλ approaches 1. According to our

simulation study,N = 10000 is large enough forλ = 0.80 but may need to be 20000 ifλ = 1.. For

a smallerλ, e.g.,λ ≤ 0.4 in Table 7,N ≥ 5000 is sufficiently high for our approach. The value of

N can be quite large without causing computational difficulty.

4 An application

In this section, the example of melanoma, one of the skin cancers, is used to demonstrate the

application of the proposed EWMA-type self-starting control scheme. Skin cancer is the most

common type of cancer and accounts for about half of all cancers in the United States1. According

1http://www.cancer.org/Cancer/CancerCauses/SunandUVExposure/skin-cancer-facts
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to the National Cancer Institute, more than 2,000,000 Americans develop skin cancer annually

2. There are three most common types of skin cancer. Among these, melanomas of the skin

are considered the most dangerous because they are more likely to spread to other parts of the

body. Over all ages, melanoma is the eighth most common type of cancer among men as well as

among women. In the state of New York, from 2005 through 2009, approximately 1,957 men and

1,493 women were diagnosed with melanoma each year, accounting for approximately 4 percent

of cancers among men and 3 percent of cancers among women. About 9,784 men and 7,467

women who resided in New York had a diagnosis of melanoma within the past five years.

The New York State Department of Health (NYSDOH) collected the data related to the melanoma

each year, including the number of incidences and the population size in each county in New York

State, from 1976 to 2010 and further reported the annual information through its official website3.

The documented dataset is available in the supplementary material. Figure 1 presents for females

the time series plots of (a) the counts of incidence, (b) the population sizes (in the units of 100,000)

and (c) the incidence rates of melanoma per 100,000 population in Manhattan during the past 35

years. The population sizes experienced large changes over time. The incidence rate showed a sig-

nificant growth trend starting from 1995 and the values remained high until the end of the records.

The American Cancer Society (2012) believes that the increased rate could be related to the danger

of indoor tanning, which has become more common in recent years.

According to the observed information, we chose to use model (1) and start the monitoring at

the year 1986. The 19 observations during 1976-1994 are used as the historical data, i.e, we used

m0 = 19. Note that the validity of our method relies on the assumption that the observations are (at

least approximately) Poisson distributed with time-varying sample sizes. The Poisson distribution

is widely used for modelling the mortality/incidence counts in healthcare studies by, e.g., Schwartz

2http://www.cancer.gov/cancertopics/types/skin
3http://www.health.ny.gov/statistics/cancer/registry/table2/ b2melanomanewyork.htm
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(1993), Schwartz et al. (1996),̈Osby (2000), Brouhns et al. (2005), and Nakaya et al. (2005).

However, it is quite difficult to statistically test for a heterogeneous Poisson process with rare

observations, which is exactly the case in this example. Such a study is beyond the scope of this

paper, but could be subject of future research. We choseλ = 0.1 andα = 0.01. In addition

to our proposed control scheme, all the traditional methods except the TR-4 method are applied

in this example. The TR-4 method is not used here due to its limitation to monitoring Poisson

rates with constant sample sizes. Table 1 presents the control limit (CL), the charting statistic

(CS) corresponding to each year, and also the signalling status (S) (specifically, it refers to IC or

OC) of the four methods. The proposed control scheme and the TR-2 method issued signals at

the year 1996, whereas the TR-1 and TR-3 methods issued signals at the year 1997. The result is

consistent with our observation, that is, a significant increase occurred after the year 1995. Through

this example, we have illustrated the use of the proposed self-starting control scheme when only

limited historical information is available.

5 Conclusion

With an increasing interest in the monitoring of Poisson rates, many studies have been conducted

in Phase II, where the in-control process parameter is assumed to be known exactly. We consider

the problem of monitoring the Poisson rates with time-varying sample sizes when the in-control

process parameter is not available, which is the common situation in applications. In cases of an

insufficient number of reference samples, the self-starting method is commonly used. However,

there is an obstacle in applying the self-starting method in monitoring the Poisson rates with time-

varying sample sizes, i.e., it is difficult to determine the control limit appropriately for the Poisson

rates since the limit depends heavily on the unknown process parameter. Inappropriate assumptions

or estimation of the parameter may lead to unacceptable average IC run length performance of
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the control charts, and/or reduce the sensitivity of the chart in detecting process changes. To

overcome this hurdle, we propose a self-starting monitoring scheme based on the EWMA chart for

monitoring the Poisson rate when the in-control parameter is unknown. The probability control

limits discussed by Shen et al. (2013) are used, but determined with the simulation approach

newly developed in our paper. The presented self-starting scheme can be readily applied to other

traditional control charts, e.g., the CUSUM chart, through simple modification. The simulation

studies conducted in our paper have verified the robust and satisfactory IC and OC run length

performance under different settings. In particular, the proposed control scheme has a very good

performance in the rare event situation when the monitoring is activated near the start-up stage

(i.e., the number of reference samples is small).

Future research may be considered in the following directions. First of all, recall that in this

paper we applied a simple EWMA-type charting statistic, as well as a naive estimate of the param-

eter at each time point. Obviously, more effective charting statistics, e.g., the weighted-likelihood-

based EWMA statistic proposed by Zhou et al. (2012), can be integrated into our proposed scheme.

Similarly, the estimation of the parameter may be improved, e.g., by using a moving average, in or-

der to derive better performance of the control scheme. In addition, more work is needed to extend

our method to Phase I analysis, in which detection of outliers or change-points in a set of historical

observations and estimation of the baseline occurrence rate is of particular interest. Note that the

performance of all control charts is impacted by the number of reference samples. As a result, it

would be interesting to investigate the necessary amount of Phase I data to ensure the specified

in-control performance in Phase II. Moreover, our bootstrap-based approach may be applied to

design a GLRT-based control chart (see Naus and Wallenstein (2006) for reference) developed in

the literature on temporal scan statistics.
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Frisén, M., and De Maŕe, J. (1991), “Optimal surveillance,”Biometrika, 78, 271-280.

Han, S. W., Tsui, K-L., Ariyajunya, B., and Kim S. B. (2010), “A comparison of CUSUM, EWMA, and temporal
scan statistics for detection of increases in Poisson rates,”Quality and Reliability Engineering International,
26, 279-289.

Hawkins, D. M. (1987), “Self-starting CUSUM charts for location and scale,”The Statistican, 36, 299-315.

Hawkins, D. M., and Maboudou-Tchao, E. M. (2007), “Self-starting multivariate exponentially weighted moving
average control charting,”Technometrics, 49, 199-209.

Hawkins, D. M., and Olwell, D. H. (1998),Cumulative sum charts and charting for quality improvement, New York:
Springer Verlag.

Hawkins, D. M., Qiu, P., and Kang, C. W. (2003), “The changepoint model for statistical process control,”Journal
of Quality Technology, 35, 355-366.

Jensen, W. A., Jones, L. A., Champ, C. W., and Woodall, W. H. (2006), “Effects of parameter estimation on control
chart properties: a literature review,”Journal of Quality Technology, 38, 349-364.

Jones-Farmer, L.A., Woodall W.H., Steiner, S.H., and Champ, C.W. (2014), “An overview of Phase I analysis for
process improvement and monitoring,”Journal of Quality Technology, 46, 265-280.

Keefe, M. J., Woodall, W. H., and Jones-Farmer, L. A. (2015), “The conditional in-control run length performance
of self-starting control charts. Submitted toQuality Engineering.

Krieger, N. (2008), “Hormone therapy and the rise and perhaps fall of US breast cancer incidence rates: critical
reflections,”International Journal of Epidemiology, 37, 627-637.

Lucas, J. M. (1985), “Counted data CUSUMs,”Technometrics, 27, 129-144.

Margavio, T. M., Conerly, M. D., Woodall, W. H., and Drake, L. G. (1995), “Alarm rates for quality control charts,”
Statistics& Probability Letters, 24, 219-224.

Mei, Y., Han, S. W., and Tsui, K-L. (2011), “Early detecting of a change in Poisson rate after accounting for popula-
tion size effects,”Statistica Sinica, 21, 597-624.

Nakaya, T., Fotheringham, A.S., Brunsdon, C., and Charlton, M. (2005), “Geographically weighted Poisson regres-
sion for disease association mapping, ”Statistics in Medicine, 24, 2695-2717.

Naus, J., and Wallenstein, S. (2006), “Temporal surveillance using scan statistics,”Statistics in Medicine, 25, 311-
324.

Psarakis, S., Vyniou, A. K., and Castagliola, P. (2014), “Some recent developments on the effects of parameter
estimation on control charts,”Quality and Reliability Engineering International, 30, 1113-1129.

Purdy, G. G., Richards, S. C., and Woodall, W. H. (2015), “Surveillance of nonhomogeneous Poisson processes. To
appear inTechnometrics.

24
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

T
ex

as
 A

 &
 M

 I
nt

er
na

tio
na

l U
ni

ve
rs

ity
] 

at
 1

2:
42

 1
8 

A
ug

us
t 2

01
5 



ACCEPTED MANUSCRIPT

Qiu, P. (2014),Introduction to Statistical Process Control, Boca Raton, FL: Chapman & Hall/CRC.

Quesenberry, C. P. (1991a), “SPC Q charts for start-up processes and short or long runs,”Journal of Quality Tech-
nology, 23, 213-224.

Quesenberry, C. P. (1991b), “SPC Q charts for a Poisson parameterλ: short or long runs,”Journal of Quality
Technology, 23, 296-303.

Quesenberry, C. P. (1995), “On properties of Q charts for variables,”Journal of Quality Technology, 27, 184-203.

Quesenberry, C. P. (1997),SPC Methods for Quality Improvement, New York: Wiley.
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Figure 1: Female melanoma incidence data. (a) Number of female incidences (b) Female popula-
tion (c) Incidence rate.
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Table 1:Estimated AARL0 (with δ in parentheses) of the proposed control scheme, the TR-1 method, the
TR-2 method, the TR-3 method, and the TR-4 method whenθ0 = 1 andnt = 20.

α [ARL0] 0.005 [200] 0.002 [500] 0.001 [1000]
m0 λ 0.05 0.10 0.50 0.80 0.05 0.10 0.50 0.80 0.05 0.10 0.50 0.80
10 Proposed 192 (0.04) 184 (0.08) 188 (0.06) 190(0.05) 472 (0.06) 464 (0.07) 462 (0.08) 467(0.07) 951 (0.05) 965 (0.03) 940 (0.06) 941(0.06)

TR-1 831 (3.16) 577 (1.89) 507 (1.54) 314(0.57) 2144 (3.29) 1944 (2.89) 1052 (1.10) 1035(1.07) 4387 (3.39) 3325 (2.33) 2456 (1.46) 1674(0.67)
TR-2 656 (2.28) 583 (1.92) 421 (1.11) 346(0.73) 1859 (2.72) 1641 (2.28) 1129 (1.26) 901(0.80) 3608 (2.61) 3299 (2.23) 2125 (1.13) 1814(0.81)
TR-3 79.6 (0.60) 88.8 (0.56) 124 (0.38) 144(0.28) 155 (0.69) 183 (0.63) 296 (0.41) 348(0.30) 253 (0.75) 320 (0.68) 564 (0.44) 663(0.34)
TR-4 197 (0.02) 203 (0.02) 192 (0.04) 194(0.03) 496 (0.01) 483 (0.03) 531 (0.06) 526(0.05) 1057 (0.06) 901 (0.10) 1029 (0.03) 913(0.09)

20 Proposed 189 (0.05) 190 (0.05) 187 (0.06) 188(0.06) 483 (0.04) 470 (0.06) 460 (0.08) 490(0.02) 947 (0.05) 955 (0.04) 948 (0.05) 932(0.07)
TR-1 664 (2.32) 497 (1.49) 331 (0.66) 295(0.48) 1651 (2.30) 1356 (1.71) 827 (0.65) 687(0.37) 3598 (2.60) 2863 (1.86) 1854 (0.85) 1621(0.62)
TR-2 582 (1.91) 524 (1.62) 343 (0.72) 306(0.53) 1542 (2.08) 1437 (1.87) 791 (0.58) 636(0.27) 3346 (2.35) 2854 (1.85) 1539 (0.54) 1368(0.37)
TR-3 77.0 (0.62) 88.4 (0.56) 128 (0.36) 143(0.29) 151 (0.70) 179 (0.64) 293 (0.41) 338(0.32) 247 (0.75) 325 (0.68) 554 (0.45) 644(0.36)
TR-4 195 (0.03) 189 (0.06) 188 (0.06) 198(0.01) 535 (0.07) 501 (0.00) 491 (0.02) 517(0.03) 1006 (0.01) 917 (0.08) 922 (0.08) 992(0.01)

50 Proposed 187 (0.07) 189 (0.06) 191 (0.05) 196(0.02) 488 (0.02) 482 (0.04) 478 (0.04) 472(0.06) 942 (0.06) 939 (0.06) 932 (0.07) 950(0.05)
TR-1 478 (1.39) 366 (0.83) 272 (0.36) 217(0.09) 1221 (1.44) 1104 (1.21) 702 (0.40) 636(0.27) 2610 (1.61) 2229 (1.23) 1422 (1.42) 1240(0.24)
TR-2 439 (1.20) 385 (0.93) 258 (0.29) 230(0.15) 1203 (1.41) 1008 (1.02) 669 (0.34) 580(0.16) 2724 (1.72) 2426 (1.43) 1236 (0.24) 1107(0.11)
TR-3 80.0 (0.60) 88.0 (0.56) 127 (0.37) 144(0.28) 157 (0.69) 185 (0.63) 296 (0.41) 341(0.32) 255 (0.75) 324 (0.68) 558 (0.44) 669(0.33)
TR-4 192 (0.04) 194 (0.03) 193 (0.04) 202(0.01) 502 (0.00) 483 (0.03) 484 (0.03) 518(0.04) 911 (0.09) 990 (0.01) 1001 (0.00) 979(0.02)

100 Proposed 199 (0.00) 198 (0.01) 191 (0.05) 196(0.02) 498 (0.00) 483 (0.03) 475 (0.05) 491(0.02) 971 (0.03) 951 (0.05) 926 (0.07) 931(0.07)
TR-1 365 (0.83) 288 (0.44) 234 (0.17) 201(0.01) 947 (0.89) 696 (0.39) 598 (0.20) 512(0.02) 2148 (1.15) 2020 (1.02) 1151 (0.15) 967(0.03)
TR-2 338 (0.69) 308 (0.54) 245 (0.23) 216(0.08) 996 (0.99) 806 (0.61) 580 (0.16) 535(0.07) 1975 (0.98) 1671 (0.67) 1074 (0.07) 1040(0.04)
TR-3 77.5 (0.61) 88.0 (0.56) 128 (0.36) 146(0.27) 151 (0.70) 180 (0.64) 298 (0.40) 344(0.31) 260 (0.74) 333 (0.67) 571 (0.43) 659(0.34)
TR-4 205 (0.03) 197 (0.02) 206 (0.03) 203(0.02) 523 (0.05) 514 (0.03) 468 (0.06) 529(0.06) 1097 (0.10) 996 (0.00) 978 (0.02) 904(0.10)
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Table 2:Estimated AARL0 (with δ in parentheses) of the proposed control scheme, the TR-1 method, the
TR-2 method, the TR-3 method, and the TR-4 method whenm0 = 20 andλ = 0.1

α [ARL0] 0.005 [200] 0.002 [500] 0.001 [1000]
θ0 nt 20 200 2000 20 200 2000 20 200 2000
0.1 Proposed 188 (0.06) 186 (0.07) 191(0.05) 471 (0.06) 484 (0.03) 465(0.07) 940 (0.06) 953 (0.05) 960(0.04)

TR-1 501 (1.51) 498 (1.49) 532(1.66) 1391 (1.78) 1384 (1.77) 1494(1.99) 2911 (1.91) 2993 (1.99) 2985(1.99)
TR-2 521 (1.61) 529 (1.65) 524(1.62) 1463 (1.93) 1418 (1.84) 1450(1.90) 2821 (1.82) 2904 (1.90) 2816(1.82)
TR-3 26.0 (0.87) 88.4 (0.56) 150(0.25) 42.1 (0.92) 184 (0.63) 355(0.29) 57.9 (0.94) 315 (0.69) 683(0.32)
TR-4 182 (0.09) 183 (0.09) 191(0.05) 467 (0.07) 513 (0.03) 483(0.03) 905 (0.10) 1073 (0.07) 1099(0.10)

1 Proposed 190 (0.05) 184 (0.08) 193(0.04) 470 (0.06) 498 (0.00) 495(0.01) 955 (0.04) 956 (0.04) 972(0.03)
TR-1 497 (1.49) 510 (1.55) 542(1.71) 1356 (1.71) 1346 (1.69) 1233(1.47) 2863 (1.86) 3113 (2.11) 3190(2.19)
TR-2 528 (1.64) 517 (1.59) 539(1.70) 1423 (1.85) 1419 (1.84) 1452(1.90) 2830 (1.83) 2918 (1.92) 2862(1.86)
TR-3 87.8 (0.56) 152 (0.24) 181(0.10) 183 (0.63) 346 (0.31) 453(0.09) 326 (0.67) 658 (0.34) 891(0.11)
TR-4 194 (0.03) 195 (0.03) 185(0.075) 522 (0.04) 484 (0.03) 501(0.00) 933 (0.07) 1032 (0.03) 927(0.07)

5.0 Proposed 190 (0.05) 185 (0.08) 188(0.06) 490 (0.02) 480 (0.04) 488(0.03) 964 (0.04) 967 (0.03) 963(0.04)
TR-1 514 (1.57) 526 (1.63) 532(1.66) 1419 (1.84) 1286 (1.57) 1347(1.69) 2930 (1.93) 2919 (1.92) 2883(1.88)
TR-2 541 (1.71) 493 (1.47) 527(1.63) 1497 (1.99) 1362 (1.72) 1423(1.85) 2840 (1.84) 2922 (1.92) 2930(1.93)
TR-3 135 (0.33) 172 (0.14) 196(0.02) 304 (0.39) 429 (0.14) 472(0.06) 583 (0.42) 833 (0.17) 909(0.09)
TR-4 193 (0.04) 217 (0.09) 194(0.03) 485 (0.03) 523 (0.05) 542(0.08) 1012 (0.01) 935 (0.07) 1084(0.08)

10.0 Proposed 194 (0.03) 190 (0.05) 192(0.04) 478 (0.04) 487 (0.03) 481(0.04) 944 (0.06) 960 (0.04) 963(0.04)
TR-1 518 (1.59) 505 (1.53) 497(1.49) 1284 (1.57) 1315 (1.63) 1300(1.60) 3008 (2.01) 2844 (1.84) 3007(2.01)
TR-2 491 (1.46) 521 (1.61) 509(1.55) 1481 (1.96) 1346 (1.69) 1474(1.95) 2704 (1.70) 2886 (1.89) 2783(1.78)
TR-3 153 (0.24) 181 (0.10) 198(0.01) 359 (0.28) 442 (0.12) 484(0.03) 683 (0.32) 906 (0.09) 931(0.07)
TR-4 190 (0.05) 188 (0.06) 206(0.03) 493 (0.01) 471 (0.06) 531(0.06) 1094 (0.09) 1043 (0.04) 911(0.09)
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Table 3: Estimated average IC ARL of the proposed control scheme with the time-varying sample sizes
whenλ = 0.1, m0 = 20 andα = 0.005. Absolute relative error from ARL0 = 200 is inparentheses.

Scenario θ0
0.1 1 5 10

A 186 (0.07) 196(0.02) 194(0.03) 194 (0.03)
B 190(0.05) 195(0.02) 194(0.03) 195 (0.03)
C 183(0.09) 191(0.05) 196(0.02) 191(0.05)
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Table 4:Estimated AARL1’s of the proposed control scheme and the TR-4 method whenθ0 = 1, nt = 20,
m0 = 20, andα = 0.005.

θ1 τ = 21,λ = 0.1 τ = 41,λ = 0.1 τ = 21,λ = 0.5
Proposed TR-4 Proposed TR-4 Proposed TR-4

1.025 138 157 126 134 159 166
1.050 92.5 101 81.1 87.1 129 143
1.075 60.2 64.3 49.1 55.7 99.2 106
1.100 41.6 42.7 29.5 30.5 75.4 90.8
1.125 24.8 26.6 19.2 19.5 57.6 66.4
1.150 16.8 17.7 14.2 15.8 38.1 43.4
1.175 11.8 13.8 10.2 10.3 31.2 33.6
1.200 9.52 9.94 8.78 8.76 19.7 21.4
1.500 2.24 2.28 2.22 2.23 1.51 1.68
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Table 5: EstimatedAARL (SDARL) of the proposed control scheme whenλ = 0.1.

nt m0 α = 0.005
[E(ARL0) = 200]
θ0 = 0.1

α = 0.005
[E(ARL0) = 200] θ0 = 1

α = 0.002
[E(ARL0) = 500] θ0 = 1

20 10 191(20.3) 192(18.4) 499(37.6)
20 193(16.8) 191(14.4) 498(51.5)
30 189(17.7) 189(15.5) 499(47.1)
50 190(16.3) 192(19.6) 484(34.2)

50 10 198(16.3) 200(15.4) 500(49.1)
20 193(18.1) 195(16.9) 499(48.6)
30 190(17.2) 191(19.0) 482(48.3)
50 188(18.4) 186(18.9) 482(45.4)

200 10 193(18.1) 198(20.5) 499(47.9)
20 193(17.7) 195(18.2) 498(35.9)
30 190(17.2) 190(17.9) 488(43.9)
50 192(15.1) 190(17.6) 483(36.0)
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Table 6: Estimated AARL0 (with δ in parentheses) of the proposed control scheme whenm0 = 20 and
α = 0.005 (E(ARL0) = 200).

N

λ = 0.10 λ = 0.40 λ = 0.80
θ0 = 1 θ0 = 5 θ0 = 1 θ0 = 5 θ0 = 1 θ0 = 5.0

nt nt nt nt nt nt

20 200 20 200 20 200 20 200 20 200 20 200
200 122

(0.39)
124

(0.38)
125

(0.38)
125

(0.38)
99.4

(0.50)
98.7

(0.51)
97.8

(0.51)
99.5

(0.50)
89.9

(0.55)
91.8

(0.54)
92.4

(0.54)
91.8

(0.54)
500 187

(0.07)
192

(0.04)
191

(0.05)
189

(0.06)
162

(0.19)
166

(0.17)
165

(0.18)
167

(0.17)
155

(0.23)
157

(0.22)
157

(0.22)
158

(0.21)
1000 173

(0.14)
177

(0.12)
174

(0.13)
177

(0.12)
162

(0.19)
160

(0.20)
159

(0.21)
162

(0.19)
154

(0.23)
156

(0.22)
155

(0.23)
158

(0.21)
2000 185

(0.08)
187

(0.07)
185

(0.08)
186

(0.07)
176

(0.12)
176

(0.12)
174

(0.13)
174

(0.13)
169

(0.16)
171

(0.15)
173

(0.14)
173

(0.14)
5000 192

(0.04)
195

(0.03)
192

(0.04)
192

(0.04)
181

(0.10)
186

(0.07)
182

(0.09)
186

(0.07)
178

(0.11)
181

(0.10)
176

(0.12)
178

(0.11)
10000 191

(0.05)
192

(0.04)
194

(0.03)
194

(0.03)
186

(0.07)
191

(0.05)
185

(0.08)
186

(0.07)
184

(0.08)
184

(0.08)
183

(0.09)
188

(0.06)
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Table 7:Control limit, charting statistic, and detected status of four methods with respect to the incidence
rate ofmelanoma.2

Year
Proposed TR-1 TR-2 TR-3

CL CS S CL CS S CL CS S CL CS S
1995 0.244 0.087 IC 0.490 0.087 IC 0.249 0.087 IC 0.398 0.089 IC
1996 0.310 0.327 OC 0.490 0.333 IC 0.311 0.327 OC 0.398 0.314 IC
1997 - - - 0.490 0.565 OC - - - 0.398 0.515 OC
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