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W e consider the capacity allocation problem for a retailer with multiple suppliers and multiple demand classes. The
retailer offers one seasonal product and reserves capacity from multiple suppliers. Customers in different classes

are charged with different selling prices for the same product. We analyze the optimal capacity allocation policies with
the following three types of customers: (i) patient customers, (ii) impatient customers, and (iii) customers with limited
patience. To empower our analysis, we propose a new preservation property of decomposition under a maximization
operator. Based on the preservation property, we show that the value function in each period is decomposable for each
type of customers. We then characterize the optimal capacity allocation policy for each type of customers and develop an
efficient algorithm to obtain the respective optimal policy by exploiting decomposition. We also numerically investigate
the optimal policy and show its value against a counterpart static heuristic policy. Finally, we extend our results to sys-
tems with multiple products, new capacity additions, etc.
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1. Introduction

Dynamically matching suppliers with customers is
common in industry nowadays due to the fast devel-
opment of e-commerce, online platforms, and supply
chain networks. On the supply side, firms usually
source from multiple suppliers with potentially dif-
ferent costs due to the considerations of supplier
diversification and capacity constraints (Simchi-Levi
et al. 2008). A firm may face with different ordering
costs even from the same supplier. This happens
when the supplier has both regular and emergent
capacity (e.g., through overtime work) or has both
long-term and short-term supply contracts with dif-
ferent prices (Cohen and Agrawal 1999). On the
demand side, a firm may segment customers into dif-
ferent priority levels in order to charge personalized
prices (Baker et al. 2001) or adopt target promotions
(e.g., personalized catalogs in Simester et al. 2006).
Customer segmentation can be achieved by, e.g.,
clickstream tracking techniques that are commonly
used by e-commerce firms. Customers with different

priority levels may be associated with different selling
prices and waiting costs (e.g., customers have hetero-
geneous sensitivities toward the delay of fulfillment).
To maximize its profit in a dynamic matching envi-
ronment, a firm has to allocate different classes of
capacity to different segments of customers. This is
challenging for firms in complex business environ-
ments.
This study is partially motivated by a cross-border

e-commerce firm in China facing the above challenge.
This firm fulfills customer demand with drop ship-
ping, a system in which the firm does not hold inven-
tory but offers suppliers’ inventory for sale. It sources
from two suppliers: a global supplier in Canada and a
local supplier with warehouses in the foreign-trade
zone in Southern China. The delivery times of the two
suppliers are almost the same.1 The local supplier
offers a low unit usage cost (e.g., the unit procure-
ment cost) but incurs a high unit holding cost because
it is capacity-constrained. In contrast, the global sup-
plier offers a high unit usage cost (e.g., the unit pro-
curement cost plus the unit global shipping cost) but
a low unit holding cost. The firm has both offline and
online stores with possibly different selling prices as,
e.g., some customers may receive coupons and/or†Both authors contributed equally.
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personalized discounts while others may not. The
firm also provides free shipping for most goods in its
online store, but the shipping costs may be different
for various destinations. Hence, even with the same
nominal price, the actual price (i.e., the nominal price
minus the shipping cost) varies for online customers.
In fact, this practice—offering different prices for the
same product to customers—is also adopted by other
firms.2 The firm has to make capacity allocation deci-
sions for demand associated with different prices in
each period in order to maximize its profit.
To address the challenge of dynamically matching

capacity with multi-class demand, we consider the
capacity allocation problem for a retailer offering one
seasonal product. The retailer sources from multiple
suppliers with different unit usage and holding costs.
It reserves limited capacity from the suppliers before
the selling season because the capacity reservation is
costly and the suppliers may be capacity-constrained.
The units from different suppliers are the same. The
retailer can charge different prices for customers
through personalized pricing. Moreover, customers
may have different types of waiting behavior when
their orders cannot be fulfilled immediately. To cap-
ture customers’ rich variety of waiting behavior, we
consider the following three types of customers: (i)
patient customers who can wait for their orders to be
fulfilled; (ii) impatient customers who leave if their
orders cannot be fulfilled immediately; and (iii) cus-
tomers with limited patience who can wait for a lim-
ited time period. The research question is how to
dynamically allocate limited capacity from suppliers
to different segments of customers under each of the
above three types of customer waiting behavior.
Note that patient customers are typically assumed

in the inventory management literature, e.g., the back-
ordering setting. While impatient customers are com-
mon in the revenue management literature. Unlike
traditional channels, in e-business, customers usually
have limited patience. For example, online retailers
usually communicate with customers via email,
instant messenger, etc. Customers also frequently
receive emails or notifications from large retailers,
e.g., Amazon and Walmart, when there is a price
reduction for a product. The product typically has
been searched by those customers in their platforms.
These customers usually have limited patience as they
have updated information from multiple sellers.
However, how to manage customers with limited

patience receives less attention in the existing litera-
ture. To capture customers with limited patience, we
build the following customer behavioral model. By
exploiting past transaction data, the retailer chooses
personalized prices (e.g., by issuing discounts and
coupons to individual customers) based on cus-
tomers’ valuations. The valuation declines as a

customer is waiting because the waiting customer
may search for alternative products or sellers. Once
the valuation of the customer is smaller than the low-
est price the retailer is willing to offer, the customer
leaves.
We formulate the capacity allocation problem as an

Markov decision process under each of the three
types of customers. To empower our analysis, we
establish a new preservation property of decomposi-
tion under a maximization operator. Exploiting the
preservation property of decomposition, we find that
the value function under each of the three types of
customers is decomposable in each period. Thus, the
multi-dimensional value function in each period can
be decomposed as the sum of single-variable compo-
nent functions.
By leveraging the decomposition of the value func-

tions, we show that for either patient customers or cus-
tomers with limited patience, the optimal capacity
allocation policy can be described by a nested protec-
tion level (NPL) policy: There exists a nested protection
level depending on the system state; it is optimal to
reserve the total remaining capacity to the nested pro-
tection level, if it is feasible. For impatient customers,
we show that a class-specific protection level (CSPL)
policy is optimal: There exists a fixed protection level
for each demand class; it is optimal to accept a cus-
tomer if the total remaining capacity is larger than the
corresponding protection level, and to reject the cus-
tomer otherwise. Based on the decomposition property
of the value functions, we develop efficient algorithms
to obtain the optimal policies. Finally, we also numeri-
cally show the impacts of system parameters on the
optimal policies and the value of the optimal policy
against a simple heuristic policy based on the deter-
ministic linear programming (DLP). We find that under
our settings, the heuristic policy may not be effective.
Our main contributions are summarized below.

• We provide a modeling framework to the
capacity allocation problems under three types
of customers. We allow multiple demand
classes and multiple suppliers.

• We show a new result on the preservation of
decomposition under a maximization operator.

• We show that the optimal capacity allocation
policy for each type of customers can be
described by either the NPL policy or the CSPL
policy. Note that the model in Topkis (1968) is
a special case of our model. However, he does
not show the decomposition of value functions.

• Based on the decomposition of value functions,
we develop efficient algorithms to obtain the
optimal policies.

The rest of this study is organized as follows. We
review the related literature in section 2. In section 3,
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we analyze the system with patient customers. In sec-
tion 4, we present our results for the other two types
of customers. In section 5, we present the numerical
studies. In section 6, we consider several extensions.
Finally, we provide concluding remarks in section 7.
All proofs are relegated to Appendix S1.

2. Related Literature

This study is related to the literature on inventory
rationing. With inventory rationing, firms may delay
the fulfillment of lower-priority demand and reserve
capacity for higher-priority demand in the future. The
objective is to maximize the expected total profit over
multiple periods. The capacity reservation in revenue
management is also a form of inventory rationing.
There are two streams of literature on inventory
rationing: inventory rationing with a myopic ordering
policy or without ordering, and priority inventory
models with ordering.
In the stream of literature on inventory rationing

with a myopic ordering policy or without ordering,
Veinott (1965) proposes a fixed rationing level policy
and shows the optimality of the myopic ordering
policy. Evans (1968) and Kaplan (1969) analyze the
optimal rationing policies with two demand classes.
In particular, Topkis (1968) shows that the state-
independent rationing level policy is optimal for an
inventory system with a single product, multiple
demand classes under both the lost-sales and backo-
rdering settings when there is no ordering during
the horizon. Even with this result, it is unclear how
to obtain the optimal rationing levels efficiently
because he does not show the decomposition of
value functions. Bao et al. (2018) show the decompo-
sition property of the value functions for the Top-
kis’s model. Unlike the Topkis’s model, we assume
that capacity can be reserved from multiple suppli-
ers. We derive the decomposition property for the
value functions in our problems. Note that the
decomposition approach is first proposed by Clark
and Scarf (1960). However, their method is not
applicable to our settings as we have multiple
demand classes.
This study is also related to the literature on peri-

odic-review priority inventory models with order-
ing. Cohen et al. (1988) consider an (s, S)-type
ordering policy and a strict priority rule of stock
rationing for an inventory system with two demand
classes and lost sales. They present effective approxi-
mate solutions for their model. Sobel and Zhang
(2001) investigate a priority inventory system with
two demand classes (deterministic demand and
stochastic demand), and show that a modified (s, S)
policy with a fixed cost is optimal. Frank et al.
(2003) also explore a priority inventory system with

two demand classes but assume that the determinis-
tic demand must be satisfied immediately and that
any unfulfilled stochastic demand is lost. They
depict the structure of the optimal policy and pro-
vide a simple heuristic policy. Chen et al. (2010) con-
sider an inventory system with a setup cost and two
stochastic demand classes. They show that the state-
dependent (s, S) policy is optimal for ordering and
partially characterize the rationing structure. Ding
et al. (2006) consider the joint pricing and demand
allocation problem with multiple demand classes for
a limited inventory. Zhou et al. (2011a,b) consider
an inventory system with limited production capac-
ity and multiple demand classes. They demonstrate
that a modified base stock policy is optimal for
ordering and that a multi-level rationing policy is
optimal for inventory allocation. Unlike the above
papers, we consider the optimal capacity allocation
decisions with multiple suppliers for different types
of customers and characterize the optimal policies
based on the decomposition of value functions. We
also develop efficient algorithms to obtain the opti-
mal policies.
Finally, this study is related to the revenue manage-

ment literature, in particular the network revenue
management (NRM) literature. In this literature, the
focus is to dynamically maximize the revenue with
multiple demand classes and multiple products. One
stream of the NRM literature, e.g., Curry (1990),
Wong et al. (1993), Gallego and van Ryzin (1997),
Bertsimas and de Boer (2005), and van Ryzin and Vul-
cano (2008), assumes that demand for each product is
a stochastic process that is unaffected by the availabil-
ity of other products. Cooper and Homem-de-Mello
(2007) provide an MDP formulation for a network
revenue management problem. They consider a
“time-decomposition approach” to approximate the
optimal reservation policy. Another stream of the
NRM literature incorporates customer choice models,
see Zhang and Cooper (2005), Liu and van Ryzin
(2008), Zhang and Adelman (2009), and Zhang (2011).
Typically, it is challenging to solve the NRM prob-
lems due to the high dimensionality. As a result, the
researchers resort to effective heuristics. The main
heuristics include deterministic linear programming
(DLP) (Cooper 2002, Talluri and van Ryzin 1998) and
approximate dynamic programming methods (Bertsi-
mas and Popescu 2003, Talluri and van Ryzin 2004,
Zhang 2011). For more details on revenue manage-
ment, see Bitran and Caldentey (2003) and Talluri and
van Ryzin (2004) for surveys of the revenue manage-
ment literature.
Consistent with the revenue management litera-

ture, in our models, we allow the retailer to order
only once before the planning horizon. Although we
consider a single product, we allow multiple
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suppliers with heterogeneous costs. Compared with
the NRM literature, by leveraging decomposition,
we are able to fully characterize the structure of the
optimal policy with multiple demand classes for
each type of customer waiting behavior. We also
develop efficient algorithms to obtain the optimal
policies.

3. Model and Results for Patient
Customers

In this section, we consider patient customers who
can wait for their orders to be fulfilled. This type of
customers includes those who sign supply contracts
with their sellers or customers with online orders. We
first present the model and the Markov decision pro-
cess (MDP) formulation of our problem, and then pro-
vide the analytical results.

3.1. Model and Formulation
We consider that a retailer sells a seasonal product to
customers by reserving units from m suppliers under a
finite planning horizon with T periods. The units from
different suppliers are the same. Following the litera-
ture on revenue management, the retailer reserves the
capacity cj,1 from supplier j, j = 1, . . ., m, before the
planning horizon. The retailer is not allowed to reserve
any more capacity during the rest of the horizon. That
is, the retailer can only use the reserved capacity to ful-
fill demand during the planning horizon. For the avail-
able capacity from supplier j, there is a unit holding
cost hj per period and a unit usage cost uj if a unit is
delivered. We refer to uj � hj as the marginal usage
cost of supplier j because using a unit of the capacity
from supplier j incurs a usage cost uj but also reduces a
holding cost hj. Without loss of generality, we assume
that the marginal usage costs satisfy the following
property: u1 � h1 ≤ u2 � h2 ≤ ��� ≤ um � hm. In the ter-
minal period T + 1, we assume that the leftover units
have no salvage value.
Though the units reserved from different suppli-

ers are the same to customers, the selling prices for
different customers can be different (due to, e.g.,
personalized pricing). We thus segment demand into
n classes based on the selling prices. Let qi be the
selling price for class i demand, i = 1, . . ., n. For
patient customers, any unfulfilled demand is back-
logged, incurring a unit waiting cost per period. Let
bi be the unit waiting cost of demand class i,
i = 1, . . ., n. We refer to qi + bi as the marginal rev-
enue of demand class i because fulfilling a unit of
demand class i earns qi and also reduces a waiting
cost bi. Without loss of generality, we assume that
the marginal revenues satisfy the following prop-
erty: q1 + b1 ≤ q2 + b2 ≤ ��� ≤ qn + bn.

We assume that the duration of each time period is
infinitesimal such that at most one unit of demand is
realized in period t, t = 1, . . ., T. This setting is com-
monly adopted in the literature of capacity manage-
ment (Cooper and Homem-de-Mello 2007). Let kt be
the probability that there is one unit of demand in per-
iod t, and pi,t be the probability that the demand is of
class i for i = 1, . . ., n. Then, 1 � kt is the probability
that no demand is realized in period t andPn

i¼1 pi;t ¼ 1 must hold. Let ki,t = ktpi,t be the probabil-
ity that there is one unit of class i demand and we must
have

Pn
i¼1 �i;t \ 1. Let Di,t 2 {0, 1} be the indicator

random variable for class i demand realization in per-
iod t. Then, Pr (Di,t = 1) = ki,t, Pr (Di,t = 0) = 1 � ki,t,
and PrðDi1;t ¼ 1; Di2;t ¼ 1Þ ¼ 0 for any i1 6¼ i2
because at most one unit of demand can be realized in
each period.
In each period, the retailer observes the demand

realization and then makes the capacity allocation deci-
sion. Our objective is to maximize the expected profit
of the retailer during the entire planning horizon by
optimally allocating the capacity reserved from differ-
ent suppliers to fulfill the demand of different classes
in each period. Let wi,t be the quantity of the backo-
rders of demand class i and wt = (wi,t)i=1,. . .,n, cj,t be the
quantity of the remaining capacity reserved from sup-
plier j and ct = (cj,t)j=1,. . .,m. Also let aij,t be the quantity
of the class i demand that is fulfilled by the capacity
reserved from supplier j and at ¼ ðaij;tÞi¼1;...;n; j¼1;...;m.
Define er as the unit vector with the r-th element being
1 and all the others being 0.
The MDP formulation for patient customers is then

provided as follows:

�vtðct;wtÞ¼
Xn
r¼1

�r; t�gtðct;wtþerÞþð1��tÞ�gtðct;wtÞ; ð1Þ

where

�gtðct;wtÞ

¼ max
at2Bðct;wtÞ

�vtþ1 ct�
Xm
j¼1

Xn
i¼1

aij;tej;wt�
Xm
j¼1

Xn
i¼1

aij;tei

0
@

1
A

2
4

þ
Xm
j¼1

Xn
i¼1

aij;tðqi�ujÞ�
Xm
j¼1

cj;t�
Xn
i¼1

aij;t

 !
hj

�
Xn
i¼1

bi wi;t�
Xm
j¼1

aij;t

0
@

1
A
3
5; ð2Þ

and Bðct;wtÞ ¼ faij;t � 0;
Pm

j¼1 aij;t � wi;t;
Pn

i¼1 aij;t
� cj;t; j ¼ 1; . . .; m; i ¼ 1; . . .; ng. The value func-
tion �vtðct; wtÞ in Equation (1) is the expected max-
imum profit from period t and onward. After
demand realization, the retailer makes the optimal
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capacity allocation decision as in Equation (2). The
constraints in Bðct; wtÞ imply that in each period,
the total quantity of the capacity allocated to the
demand class i should be no more than wi,t and
the total quantity of the allocated capacity from
supplier j should not exceed cj,t. In the terminal
period, we let �vTþ1ðcTþ1; wTþ1Þ � 0 for any
(cT+1, wT+1), that is, there is no salvage value for
leftover capacity.
The MDP above is multi-dimensional and has

m 9 n decision variables, which is difficult to ana-
lyze and compute. In the following, we aim to sim-
plify the MDP based on a transformation of the state
variables.
Notice that the units from different suppliers are

the same from customers’ perspective and each
unit of demand requires one unit of capacity to be
fulfilled. In addition, the marginal usage costs
have the following sequential property u1 � h1 ≤ ���
≤ um � hm. Intuitively, this implies that it is opti-
mal for the firm to use a unit from a supplier
with a smaller marginal usage cost first. Similarly,
because the sequential property q1 + b1 ≤ ���
≤ qn + bn, intuitively it is optimal for the firm to
allocate a unit of capacity to a customer with a
higher marginal revenue first. These intuitions lead
to the following results.

LEMMA 1. With patient customers, it is optimal to allo-
cate the capacity from suppliers with smaller marginal
usage costs first and fulfill demand classes with larger
marginal revenues first in each period.

Lemma 1 indicates that it is optimal to allocate the
capacity from supplier j only if the capacity reserved
from suppliers 1, . . ., j � 1 is depleted. Similarly, it is
optimal to fulfill the class i demand only if the
demand of classes i + 1, . . ., n is fully fulfilled.
Based on Lemma 1, we propose the following state

transformation. Let zc,t = (zj,t)j=1,. . .,m and zw,t =
(zm+i,t)i=1,. . .,n such that

zj;t ¼
Pm

k¼j ck;t; j ¼ 1; . . .;m,

zmþi;t ¼ z1;t �
Pn

k¼i wk;t; i ¼ 1; . . .; n:

�
ð3Þ

We refer to zj,t as the total capacity reserved from
suppliers j, . . ., m at the beginning of period t and
zm+i,t as the total capacity reserved from m suppliers
minus the total demand of classes i, . . ., n at the
beginning of period t, for i 2 {1, . . ., n},
j 2 {1, . . ., m}. Accordingly, zc,t and zw,t are referred
to as the echelon capacity state and the echelon demand
state, respectively.
We adopt the state transformation in Equation (3)

so that if we allocate the capacity up to supplier j
and fulfill demand up to class i in period t, then

z1,t+1 = ��� = zj,t+1 = zm+n,t+1 = ��� = zm+i+1,t+1. Let �zmþi;t ¼
zmþi;t �

Pn
k¼i Dk;t. Then, �zw;t ¼ ð�zmþi;tÞi¼1;...;n is the

echelon demand state after demand realization in
each period t, that is, �zw;t ¼ zw;t if no demand is realized
and �zw;t ¼ zw;t � e½1;i� if a unit of class i demand is
realized, where e[k,r] = ek + ek+1 + ��� + er for integers
r ≥ k. Under this definition of the state variables,
we must have zm,t ≤ ��� ≤ z1,t, zm+1,t ≤ ��� ≤ zm+n,t,
�zmþ1;t � � � � � �zmþn;t and z1;t � zmþn;t � �zmþn;t.

Notice that in period t the system states are (zc,t, zw,t)
and ðzc;t; �zw;tÞ before and after demand realization,
respectively. In fact, the system state can be further
simplified as follows. Define Θ = (hj)j=1,. . .,m for
hj �

Pm
k¼j ck;1 and hm+1 � 0. Each hj, j = 1, . . ., m, is a

constant which is independent of demand realizations
and allocations in different periods (note that the
reserved capacity cj,1 from supplier j is a fixed value).
Then, based on the priority properties in Lemma 1
and the definitions of zc,t, zw,t and Θ, we have the
following lemma. Note that we define x ∧ y =
min {x, y}, x ∨ y = max {x, y}, and x ∧ y = (x ∧ y1,
. . ., x ∧ yn) for y = (y1, . . ., yn).

LEMMA 2. Let zt be the total remaining capacity of m
suppliers at the beginning of period t. Then, for
t = 1, . . ., T, we have

(1) zc,t = zt ∧ Θ = (zt ∧ h1, . . ., zt ∧ hm), and
zt 2 [0, h1]. Moreover, �zmþi;t � zmþi;t � zt for
any i = 1, . . ., n.

(2) zw;tþ1 ¼ ztþ1 ^ �zw;t
¼ ðztþ1 ^ �zmþ1;t; . . .; ztþ1 ^ �zmþn;tÞ.

The results in Lemma 2 can be explained as fol-
lows. By Lemma 1, if hj+1 ≤ zt ≤ hj, the reserved
capacity from suppliers 1, . . ., j � 1 (resp.,
j + 1, . . ., m) must be depleted (resp., have not been
allocated yet) and the reserved capacity from supplier
j is allocated before period t, that is, zt ∧ hk = zt for
k = 1, . . ., j and zt ∧ hk = hk for k = j + 1, . . ., m.
Hence, we can use zt ∧ Θ to represent the state zc,t.
Similarly, if �zmþi;t � ztþ1 � �zmþiþ1;t, then Lemma 1
implies that in period t no demand of classes
1, . . ., i � 1 is fulfilled, some demand of class i is ful-
filled, and demand of classes i + 1, . . ., n is fully ful-
filled. Therefore, from period t to period t + 1, the
echelon demand state is updated as
zw;tþ1 ¼ ztþ1 ^ �zw;t.
Based on the above analysis, we then provide a sim-

plified MDP of our problem for patient customers as
follows. For each period t, t = 1, . . ., T,

vtðzt ^H; zw;tÞ ¼
Xn
r¼1

�r;tgtðzt ^H; zw;t � e½1;r�Þ

þ ð1� �tÞgtðzt ^H; zw;tÞ; ð4Þ
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where

gtðzt ^H; �zw;tÞ

¼ max
0_�zmþ1;t � ztþ1 � zt

"
vtþ1 ztþ1 ^H; ztþ1 ^ �zw;t

� �

�
Xm
j¼1

ujðzt ^ hj � zt ^ hjþ1Þ:

þ
Xm
j¼1

ðuj � hjÞðztþ1 ^ hj � ztþ1 ^ hjþ1Þ

þ
Xn
i¼1

qið�zmþiþ1;t � ð�zmþi;t _ ztþ1Þ ^ �zmþiþ1;tÞ

�
Xn
i¼1

biðð�zmþi;t _ ztþ1Þ ^ �zmþiþ1;t � �zmþi;tÞ
#
: ð5Þ

The terminal condition is that vT+1(zT+1 ∧ Θ,
zw,T+1) � 0 for any (zT+1, zw,T+1) as we assume zero
salvage value. We explain the equivalence between
the MDP in Equations (4)–(5) and the MDP in Equa-
tions (1)–(2) in Appendix S1.
In this simplified MDP, there is only one decision

variable zt+1. Once zt+1 is determined, we know
exactly the echelon capacity state zc,t+1 = zt+1 ∧ Θ and
the echelon demand state zw;tþ1 ¼ ztþ1 ^ �zw;t at the
beginning of period t + 1.

3.2. Analytical Results
In this section, we first introduce a new preservation
property of decomposition under a maximization
operator to facilitate the subsequent analysis. Then,
we analyze the MDP in Equations (4)–(5) and charac-
terize the optimal capacity allocation policy for
patient customers by exploiting the decomposition.

3.2.1. Preliminary Results. We first introduce the
definitions of discrete concavity and decomposition as
follows.

DEFINITION 1. A function f : Z ! R is discrete concave
if, 8x 2 Z, f(x + 2) � f(x + 1) ≤ f(x + 1) � f(x).

DEFINITION 2. A function f : Zm ! R is decomposable if
fðxÞ ¼ Pm

j¼1 fjðxjÞ for fj : Z ! R, j = 1, . . ., m.

Decomposition is a functional property proposed by Clark
and Scarf (1960). If a multivariate function is decomposable,
then the computational complexity of solving the multivariate
optimization problem can be reduced significantly because
each variable can be optimizated independently.

We then show that under a maximization operator,
the decomposition and the discrete concavity can be
preserved. Denote IfAg as the indicator function such
that IfAg ¼ 1 if the condition A holds and 0 otherwise,
and define

Pb
a x ¼ 0 for any a > b.

LEMMA 3. Suppose that y = (y1, . . ., yn) is an integer
vector such that y0 < y1 ≤ ��� ≤ yn ≤ yn+1 and yn+1 ≥ 0.
Consider the maximization problem gðy0; ynþ1; yÞ ¼
max0_y0 � x� ynþ1

Fðx; yÞ, where Fðx; yÞ ¼ fðxÞ þ Pn
j¼1

fjðx ^ yjÞ, fð�Þ; f1ð�Þ; . . .; fnð�Þ : Z ! R are discrete
concave and fj( � )’s for j = 1, . . ., n are nondecreasing.
Define s = (s0, . . ., sn) where

sj ¼min arg max
x�0

fðxÞþ
Xn
k¼jþ1

fkðxÞ
0
@

1
A; j¼ 0; . . .;n: ð6Þ

Then, we have the following results:

(1) s0 ≥ ��� ≥ sn ≥ 0 and the optimal solution of x,
denoted by x*, is x* = (y0 ∨ S(y|s)) ∧ yn+1 where
SðyjsÞ ¼ Ifs0\y1gs0 þ Pn�1

j¼1 Ifyj � sj\yjþ1gsj
þ Ifsn � yngsn þ

Pn
j¼1 Ifsj\yj � sj�1gyj.

(2) The function g(y0, yn+1, y) is discrete concave
and decomposable, that is, gðy0; ynþ1; yÞ ¼Pnþ1

j¼0 gjðyjÞ, where each component function gj(yj)
is discrete concave and

gjðyjÞ ¼

fðy0Þþ
Pn

k¼1 fkðy0Þ; j¼ 0,

fðsj�1 ^ yjÞþ
Xn
k¼j

fkðsj�1 ^ yjÞ

� fðsj ^ yjÞ�
Xn
k¼jþ1

fkðsj ^ yjÞ;
j¼ 1; . . .;n,

fðsn ^ ynþ1Þ j¼ nþ 1.

8>>>>>>>>><
>>>>>>>>>:

Lemma 3 (1) presents the optimal solution to the
maximization problem max0_y0 � x� ynþ1

Fðx; yÞ, which
is a function of (y0, yn+1, y). As s0 ≥ ��� ≥ sn while
y1 ≤ ��� ≤ yn, there is one and only one indicator func-
tion equal to 1 in the expression of S(y|s), which is
explicitly determined by s and y. Each sj, j = 0, . . ., n,
is the global maximum of fðxÞ þ Pn

k¼jþ1 fkðxÞ per
Equation (6). Lemma 3 (2) indicates that under the
maximization operator, the decomposition can be pre-
served. It explicitly shows how to update the compo-
nent functions of the post-optimization function g
(y0, yn+1, y) based on the component functions of the
objective function F(x, y).
Lemma 3 provides a new way to show the decom-

position of value functions for dynamic optimization
problems through backward induction. Suppose that
the value function in period t + 1 is decomposable.
Based on Lemma 3, the value function in period t is
also decomposable and we can obtain the optimal
solution as in Lemma 3 (1). In the subsequent analy-
sis, we adopt this backward inductive approach to
tackle our problems.
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Note that the maximization operator in Lemma 3 is
different from the counterpart in Clark and Scarf
(1960) because we have the minimum operator “∧”
between x and yj for j = 1, . . ., n. To the best of our
knowledge, Lemma 3 is a new result in the existing
literature.

3.2.2. Results. In this section, we analyze the MDP
in Equations (4)–(5). We first show that the value
function vt(zt ∧ Θ, zw,t) in Equation (4) has some
monotone properties due to Lemma 1. These mono-
tone properties are important in deriving our main
results.

LEMMA 4. vt(zt ∧ Θ, zw,t) + (zt ∧ hj)[(uj � hj) � (uj�1

� hj�1)] is nondecreasing in zt ∧ hj for j = 2, . . ., m;
and vt(zt ∧ Θ, zw,t) + zm+i,t[(qi + bi) � (qi�1 + bi�1)] is
nondecreasing in zm+i,t for i = 2, . . ., n.

We then characterize the optimal capacity alloca-
tion policy for the system with patient customers and
show the discrete concavity and the decomposition of
the function vt(zt ∧ Θ, zw,t) based on Lemmas 2, 3 and
4 as follows.

THEOREM 1. For patient customers, in period t,
t = 1, . . ., T, we have the following results:

(1) The function vt(zt ∧ Θ, zw,t) in Equation (4) is
discrete concave in (zt ∧ Θ, zw,t), and
decomposable, that is, there exist discrete concave
functions �vi;tð�Þ’s and v̂j;tð�Þ’s for i = 1, . . ., n and
j = 1, . . ., m such that vtðzt ^ H; zw;tÞ
¼ Pm

j¼1 v̂j;tðzt ^ hjÞþ
Pn

i¼1 �vi;tðzmþi;tÞ.
(2) A nested protection level (NPL) policy is optimal:

There exists a nested protection level Rtð�zw;tjRtÞ,
which is defined in Equation (7); the optimal
solution of zt+1 in Equation (5), denoted by z�tþ1, is
z�tþ1 ¼ ð�zmþ1;t _ Rtð�zw;tjRtÞÞ ^ zt, that is, it is
optimal to sequentially fulfill demand of classes
n, n � 1, . . ., 1 whenever the total remaining
capacity of all suppliers is higher than the nested
protection level Rtð�zw;tjRtÞ.

(3) The nested protection level is defined as

Rtð�zw;tjRtÞ ¼IfR1;t\�zmþ2;tgR1;t þ
Xn�1

i¼2

If�zmþi;t �Ri;t\�zmþiþ1;tg

Ri;t þ If�zmþn;t �Rn;tgRn;t

þ
Xn�1

i¼1

IfRiþ1;t\�zmþiþ1;t �Ri;tg�zmþiþ1;t; ð7Þ

where Rt = (R1,t, . . ., Rn,t) is a vector of constants such
that R1,t ≥ ��� ≥ Rn,t ≥ 0, and

Ri;t ¼ min arg max
z� 0

ftðzÞ þ
Xn
k¼iþ1

f̂k;tðzÞ
 !

; i

¼ 1; . . .; n; z 2 Z; ð8Þ

where

ftðzÞ ¼
Xm
j¼1

v̂j;tþ1ðz^ hjÞ þ ðu1 � h1 � qn � bnÞz

þ
Xm
j¼2

ðuj � hj � uj�1 þ hj�1Þðz^ hjÞ;

f̂i;tðzÞ ¼ �vi;tþ1ðzÞ þ ðqi þ bi � qi�1 � bi�1Þz; i¼ 1; . . .;n:

8>>>>>>><
>>>>>>>:

There is one and only one indicator function equal
to 1 in the expression of Rtð�zw;tjRtÞ as R1,t ≥ ��� ≥ Rn,t

while �zmþ1;t � � � � � �zmþn;t. The NPL policy indicates
that we sequentially allocate zt � Rtð�zw;tjRtÞ (resp.,
zt � �zmþ1;t) units of reserved capacity from suppliers
1, . . ., m to sequentially fulfill demand of classes
n, n � 1, . . ., 1 when Rtð�zw;tjRtÞ � �zmþ1;t (resp.,
Rtð�zw;tjRtÞ\�zmþ1;t).
The nested protection level Rtð�zw;tjRtÞ is a function

of the echelon demand state �zw;t. Given �zw;t, Rtð�zw;tjRtÞ
can be directly determined as long as we know Rt. Due
to the decomposition of the function vt(zt ∧ Θ, zw,t) in
each period, we can develop an efficient algorithm, that
is, Algorithm 1, to calculate these state-independent
constants. In Algorithm 1, we provide the procedure on
how to sequentially update the component functions of
vt(zt ∧ Θ, zw,t) and to calculate Ri,t’s for i = 1, . . ., n
based on these component functions in each period. See
the proof of Theorem 1 for more details.
Algorithm 1 is developed based on the decomposition

of the function vt(zt ∧ Θ, zw,t) in each period. The com-
putational complexity of this algorithm is Oððmþ nÞTÞ
because in each period we only need to update the
m + n component functions of vt(zt ∧ Θ, zw,t) based on
the component functions of vt+1(zt+1 ∧ Θ, zw,t+1). How-
ever, without the decomposition property, the computa-
tional complexity grows exponentially in m + n as in
general we have to compute the (m + n)-dimensional
functions tomake optimal capacity allocation decisions.

4. Analysis for the Other Types of
Customers

In this section, we consider the systems with impa-
tient customers, and customers with limited patience,
respectively. We analyze each of these systems based
on a similar approach as that in section 3. Notice that
the model settings in this section are similar to the
counterpart in section 3 except the customer waiting
behavior. Thus, in this section, we only illustrate the
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main idea on how to apply the approach in section 3
to these two systems, respectively.

4.1. Impatient Customers
For the system with impatient customers, we can sim-
plify the capacity allocation decision for any individ-
ual customer to an “accept-or-reject” decision in each
period. Specifically, a customer is accepted by the retai-
ler if a unit of capacity is allocated to fulfill her
demand. In this case the retailer receives the revenue
qi for i 2 {1, . . ., n}. In contrast, a customer is rejected
if the retailer does not fulfill her demand. In this case,
no revenue is received and the demand is immedi-
ately lost. In each period, once demand is realized, the
retailer decides whether or not to accept the demand
based on the remaining capacity of suppliers
1, . . ., m, that is, c1,t, . . ., cm,t. We assume that the
acceptance or rejection of any demand does not affect
the exogenous arrival process. Similar to the system

with patient customers, the following property still
holds.

LEMMA 5. With impatient customers, it is optimal to
allocate the capacity reserved from suppliers with smaller
marginal usage costs first in each period.

Lemma 5 is consistent with our intuition that allo-
cating the capacity reserved from a supplier with a
smaller marginal usage cost first is optimal as
u1 � h1 ≤ ��� ≤ um � hm. This result implies that if
0 < cj,t < cj,1 (i.e., some units of the capacity from sup-
plier j are allocated), then c1,t = ��� = cj�1,t = 0 (i.e., the
capacity from suppliers 1, . . ., j � 1 is depleted) and
ck,t = ck,1 for k = j + 1, . . ., m (i.e., the capacity from
suppliers j + 1, . . ., m has not yet been used).
Based on the property in Lemma 5 and the definition

of hj’s for j = 1, . . ., m + 1, we present the MDP for
impatient customers as follows. In period t, t = 1, . . ., T,
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vtðzt ^HÞ ¼
Xn
r¼1

�r;tgr;tðzt ^HÞ þ ð1� �tÞ

vtþ1ðzt ^HÞ �
Xm
j¼1

hjðzt ^ hj � zt ^ hjþ1Þ
0
@

1
A;

ð9Þ
where for r = 1, . . ., n,

gr;tðzt^HÞ¼ max
0_ðzt�1Þ�ztþ1�zt"
vtþ1 ztþ1^Hð Þ�

Xm
j¼1

ujðzt^hj�zt^hjþ1Þ:

þ
Xm
j¼1

ðuj�hjÞðztþ1^hj�ztþ1^hjþ1Þ

þqrðzt�ztþ1Þ
#
:

ð10Þ
The terminal condition is vT+1(zT+1 ∧ Θ) � 0 for any
zT+1. See the detailed explanations of the MDP in
Equations (9)–(10) in Appendix S1.
For the system with impatient customers, we char-

acterize the structure of the optimal policy for the
accept-or-reject decision in the following theorem.

THEOREM 2. For impatient customers, in period t,
t = 1, . . ., T, we have the following results:

(1) The function vt(zt ∧ Θ) is discrete concave in
zt ∧ Θ and decomposable, that is, there exist
discrete concave functions v̂j;tð�Þ’s for j = 1, . . ., m
such that vtðzt ^ HÞ ¼ Pm

j¼1 v̂j;tðzt ^ hjÞ.
(2) A class-specific protection level (CSPL) policy is

optimal for the accept-or-reject decision: For each
demand class i, i = 1, . . ., n, there is a fixed
protection level Ri,t, defined in Equation (11); it is
optimal to accept a unit of class i demand if
zt > Ri,t and to reject it otherwise.

(3) The fixed protection level Ri,t, i = 1, . . ., n, is
defined as

Ri;t ¼min arg max
z�0

Xm
j¼1

v̂j;tþ1ðz^ hjÞ þ ðu1 � h1 � qiÞz
2
4

þ
Xm
j¼2

ðuj � hj � uj�1 þ hj�1Þðz^ hjÞ
3
5; z 2 Z:

ð11Þ

The fixed protection level Ri,t, i = 1, . . ., n, is indeed
the global optimum of the objective function in

Equation (10). Theorem 2 (2) results from the discrete
concavity of the function vt(zt ∧ Θ).
Similar to the system with patient customers, we

can develop an efficient algorithm to obtain the opti-
mal fixed protection levels for the CSPL policy. The
logic of this algorithm is the same as that of Algorithm
1. Hence, we only show how to update the component
functions of vt(zt ∧ Θ) based on the component func-
tions of vt+1(zt+1 ∧ Θ) below. More details can be
found in the proof of Theorem 2.
Given vtþ1ðztþ1 ^ HÞ ¼ Pm

j¼1 v̂j;tþ1ðztþ1 ^ hjÞ, we
have vtðzt ^ HÞ ¼ Pm

j¼1 v̂j;tðzt ^ hjÞ, where

v̂1;tðzÞ ¼
Xn
r¼1

�r;tĝr1;tðzÞ

þ ð1� �tÞ v̂1;tþ1ðzÞ � h1ðzÞ
� �

;

v̂j;tðzÞ ¼
Xn
r¼1

�r;tĝrj;tðzÞ þ ð1� �tÞ v̂j;tþ1ðzÞ
�

þ ðhj�1 � hjÞz�; j ¼ 2; . . .;m;

8>>>>>>>>><
>>>>>>>>>:

and

ĝi1;tðzÞ ¼
Xm

j¼1
v̂1;tþ1ðz ^ Ri;t ^ hjÞ

þ
Xm
j¼1

v̂j;tþ1ððz� 1Þ ^ hjÞ

�
Xm

j¼1
v̂j;tþ1ððz� 1Þ ^ Ri;t ^ hjÞ

þ ðu1 � h1 � qiÞðz ^ Ri;tÞ
� h1z� ðu1 � h1 � qiÞ
� ðu1 � h1 � qiÞððz� 1Þ ^ Ri;tÞ

þ
Xm
j¼2

ðuj � hjÞ z ^ Ri;t ^ hj
�

�
Xm�1

j¼1

ðuj � hjÞ z ^ Ri;t ^ hjþ1

�
þ ðz� 1Þ ^ hjþ1 � ðz� 1Þ ^ Ri;t ^ hjþ1Þ

ĝij;tðzÞ ¼ �ðuj � uj�1Þz; j ¼ 2; . . .;m:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

4.2. Customers with Limited Patience
In this section, we consider customers with limited
patience. We assume that the retailer charges the
price for each arriving customer from a menu of
prices {q1, . . ., qn}. Without loss of generality, we
assume that 0 � q0 < q1 < ��� < qn. If a customer is
not fulfilled upon arrival, she can wait for the ful-
fillment but her valuation decreases when she
waits. Once her valuation is lower than q1 (i.e., the
smallest price that the retailer offers), this customer
leaves. For a customer with limited patience, the
behavior of downgrading valuation over time rep-
resents her waiting cost for the retailer. Such
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customer behavior is applicable to fashion, technol-
ogy, and seasonal products, etc.
We assume that the evolution of waiting customers’

valuations can be anticipated by, e.g., tracking indi-
vidual customers’ purchasing behavior through
advanced information technology. For instance, it is
common that customers frequently receive emails or
notifications from large retailers such as Amazon and
Walmart when there is a price reduction or discount
of a product. The product usually has been searched
for by those customers. The evolution of customers’
valuations can then be anticipated by tracking the
searching and purchasing behavior. This assumption
has also been adopted by the existing literature to
characterize the evolution of customers’ valuations,
such as Su (2007) and Aviv and Pazgal (2008).
We refer to customers whose valuations are within

the range [qi, qi+1) as class i customers, and impose
the following two assumptions for the dynamics of
the waiting customers’ valuations.

ASSUMPTION 1. Class i customers always have higher
valuations than class i’ customers for i > i’ in any future
period if they wait for the fulfillment of their orders.

Assumption 1 ensures that a high-valuation
customer is always willing to pay more than a low-
valuation customer.

ASSUMPTION 2. A high-valuation customer is less
patient and hence downgrades her valuation faster than a
low-valuation customer in each period.

Assumption 2 implies that it is optimal to fulfill a
high-valuation customer first.

We illustrate two models used in the existing lit-
erature that satisfy our two assumptions. Let wt be
the valuation of a customer after waiting t periods.
Su (2007) considers a linear model wt = w0 � ct,
where w0 is the initial valuation and c is the decreas-
ing rate. In his paper, customers with different valua-
tions have different degrees of patience. Aviv and
Pazgal (2008) consider that customers’ valuations
decline over the selling season and use a multiplica-
tive model such that wt = w0e

�at to reflect that, where
w0 is the initial valuation and a ≥ 0 is an exponential
decline factor.
Let w(i) 2 {0, . . ., i} be the index of the new class

that the class i customers downgrade to after waiting
one period, where i = 1, . . ., n. The Assumptions 1
and 2 imply that for 1 ≤ j < i ≤ n, we have qw(i) ≥ qw(j)
and qi � qw(i) ≥ qj � qw(j). In particular, if w(i) = 0,
then customers in class i cannot wait any longer.
Under these two assumptions, the following proper-
ties still hold in this case.

LEMMA 6. For customers with limited patience, it is
optimal to allocate the capacity reserved from suppliers
with smaller marginal usage costs first and fulfill custo-
mer classes with larger marginal revenues first in each
period.

Due to the properties in Lemma 6, the MDP for this
case is similar to the counterpart in section 3 for the
system with patient customers. Specifically, based on
the MDP in Equations (4)–(5), we can rewrite the
MDP for customers with limited patience by setting
bi = 0, i = 1, . . ., n, and replacing vt+1(zt+1 ∧ Θ zt+1 ∧
zw,t) with vtþ1ðztþ1 ^ H; ztþ1 ^ ~zw;tÞ in Equation (5),
where ~zw;t ¼ ð~z1;t; . . .; ~zn;tÞ and

~zi;t ¼ zfðiÞ;t;
fðiÞ ¼ minfr : i� r� n;wðrÞ� ig

if fr : i� r� n;wðrÞ� ig 6¼ ;;
z1;t; if fr : i� r� n;wðrÞ� ig ¼ ;.

8<
:

The rest of the analysis of this MDP is similar to that
in section 3. By a similar argument, we can show that
for customers with limited patience, vt(zt ∧ Θ, zt ∧
zw,t) is discrete concave and decomposable, and again
an NPL policy is optimal in each period. Moreover,
we can also use Algorithm 1 to obtain the NPL policy
under our assumptions.

5. Numerical Studies

In this section, we numerically illustrate the optimal
capacity allocation policy and show its value by com-
paring it with a simple heuristic policy.

5.1. Illustration of the Optimal Policy
Note that the NPL and CSPL policies are specified by
the constant parameters Ri,t’s. In this section, we
numerically illustrate the optimal capacity allocation
policies by providing these constants under different
scenarios. Consider a system with two suppliers and
two demand classes. By Algorithm 1 or its variants,
we can obtain R1,t and R2,t for period t = 1, . . ., T
under each type of customer waiting behavior. For
customers with limited patience, we assume that in
each period demand of class 2 downgrades to class 1
and demand of class 1 downgrades to class 0. As there
are only two demand classes and class 2 demand has
a higher priority, R2,t = 0 for t = 1, . . ., T under our
setting.
We first investigate how R1,t for t = 1 is affected by

the demand characteristics such as the price differ-
ence and arrival probability difference of the two
demand classes. We set T = 20, (h1, h2) = (10, 5),
(b1, b2) = (1, 1), (h1, h2) = (1, 1), (u1, u2) = (1, 1), (q1,
q2) = (q, 2q) with q 2 {1, 2, 3, 4, 5, 6}, k1,t + k2,t = 0.9
for any t, and (k1,t, k2,t) 2 {(0.1, 0.8), (0.3, 0.6),
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(0.5, 0.4), (0.7, 0.2)}, that is, the arrival probability
difference Dk = k2,t � k1,t decreases from 0.7 to �0.5
with a step of 0.4. Similar to Zhang and Cooper
(2005), these instances are selected to clearly capture
how the system parameters affect R1,t. Figure 1
depicts the change of R1,1 with respect to the price dif-
ference and the arrival probability difference under
each type of customers.
In Figure 1b and c, we can see that the values of

R1,1 for the system with customers with limited
patience and the system with impatient customers
are the same because for these systems class 1
demand cannot wait. We thus focus on R1,1’s for
the systems with patient customers and impatient
customers.
Recall that in our setting the ratio q2/q1 = 2 and

Dq = q2 � q1 = q. Under each type of customers, R1,1 is
increasing in the price difference q. That is, with a
higher price difference, we reserve more capacity for
class 2 demand. For each combination of k1,t and k2,t,
R1,1 for impatient customers is always no smaller than
that for patient customers and the difference is nonde-
creasing in q. Intuitively, for impatient customers, we
fulfill more class 1 demand as it cannot wait and hence
reserve less capacity for class 2 demand, especially
when q1 is large. In contrast, our numerical results
indicate that no matter how large q1 is, we reserve
more capacity for class 2 demand for the system with
impatient customers than the system with patient cus-
tomers. This is because for patient customers there is a
unit waiting cost b1 if class 1 demand is not fulfilled.
For the arrival probability difference Dk under the

condition k1,t + k2,t = 0.9, Figure 1 shows that a larger
Dk leads to a larger R1,1. This is consistent with our
intuition that more capacity is reserved for class 2
demand when k2,t increases while k1,t decreases. We
also observe that under a smaller Dk (e.g.,
Dk = � 0.5), R1,1 is strictly positive only when q is suf-
ficiently large. However, with a larger Dk, R1,1

increases significantly in q even when q is small.
Hence, when there is a higher (resp. lower) arrival
probability for class 2 (resp. class 1) demand and a
larger q, we reserve more capacity for future demand
of class 2. Essentially, for a system with two demand
classes, we only need to consider the allocation prob-
lem for class 1 demand because a state-independent
rationing level policy is optimal in this case.
We then investigate how R1,t is affected by the sup-

ply characteristics for patient customers. Specifically,
we numerically analyze how R1,t changes with the
supplier usage cost difference, the holding cost differ-
ence, the waiting cost difference, and the capacity
level difference (our results are robust for the other
two types of customers).
We set T = 20 and (k1,t, k2,t) = (0.5, 0.4) for

t = 1, . . ., T. First, by fixing (h1, h2) = (12, 8) and

(u1, u2, h1, h2, h1, h2) = (1, 1, 1, 1, 12, 8), we investi-
gate how R1,t’s for t = 1, . . ., 6 change with the wait-
ing cost difference Db = b1 � b2 in Table 1. We
consider three settings under which q2 + b2 = 20 and
q1 + b1 2 {12, 14, 16, 18, 20} so that q1 + b1 ≤ q2 + b2
is satisfied. Table 1 indicates that R1,t is time-depen-
dent and decreasing in t and Db. Combining the
results in Figure 1a and Table 1, we find that R1,t

decreases when both the price difference Dq and the
waiting cost difference Db increase, and R1,t tends to
be 0 when Dq is small while Db ≥ 0.

(a)

(b)

(c)

Figure 1 The Impacts of Price Differences and Arrival Probability Dif-
ferences on R1,1 under Three Types of Customers (T = 20,
h1 = 10, h2 = 5, b1 = b2 = h1 = h2 = u1 = u2 = 1). (a)
Patient Customers, (q1, q2) = (q, 2q), q e {1, 2, 3, 4, 5, 6};
(b) Customers with Limited Patience, (q1, q2) = (q, 2q),
q e {1, 2, 3, 4, 5, 6}; (c) Impatient customers,
(q1, q2) = (q, 2q), q e {1, 2, 3, 4, 5, 6} [Color figure can be
viewed at wileyonlinelibrary.com]
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Second, by fixing (h1, h2) = (12, 8) and
(q1, q2, b1, b2, h1, h2) = (4, 16, 1, 1, 12, 8), we analyze
how R1,t’s for t = 1, . . ., 6 change with the supplier
usage cost difference Du = u1 � u2 and the holding
cost difference Dh = h2 � h1 in Table 2. We consider
four settings under which u1 � h1 ≤ u2 � h2 is satis-
fied and h2 2 {0, 1, 2, 3, 4}. In general, R1,t decreases
with the unit holding cost h2 but is independent of the
holding cost difference Dh in our numerical results,
which implies that h1 plays a lesser role in determin-
ing the value of R1,t. Moreover, by comparing the four
settings, we observe that the supplier usage costs u1
and u2, and the supplier usage cost difference Du, also
have a limited impact on R1,t. Table 2 reveals that
given the prices and unit waiting costs (q1, q2, b1, b2),
R1,t is highly dependent on the unit holding cost of
the high-priority demand class.
Finally, we investigate the relationship between R1,t

and the capacity level difference Dh = h1 � h2 by fixing
(q1, q2, b1, b2, u1, u2, h1, h2) = (10, 10, 2, 10, 1, 1, 1, 1)
in Table 3. When h1 is fixed, R1,t is independent of the
capacity level difference Dh because by intuition the
rationing level only depends on the total capacity level
h1. When h2 is fixed, R1,t is increasing in Dh but the rate
of increase is limited. With the increasing of h2, the
increase rate is decreasing and eventually becomes 0
when h2 = 8.

5.2. Comparison with A Simple Heuristic Policy
To show the value of the optimal capacity allocation
policy, we compare its performance against a static
heuristic policy based on the deterministic linear pro-
gram (DLP) (see the discussion in section 2). In this
numerical study, we let q1 < q2, u1 ≤ u2 and
b1 = b2 = h1 = h2 = 0. During the planning horizon T,
given the arrival probabilities of two demand classes

as (k1,t, k2,t), the expected amounts of class i demand
for i = 1, 2 are k1,tT and k2,tT, respectively. Then, we
solve the following optimization problem in the
heuristic policy:

max
y1;y2

q1y1 þ q2y2 � u1 minfh1 � h2; y1 þ y2g
� u2 maxf0; y1 þ y2 � h1 þ h2g

s.t. y1 þ y2 � h1;

0� yi ��i;tT; i ¼ 1; 2;

y1; y2 2 Z:

Table 1 The Constant R1,t for t = 1, . . ., 6 with (k1,t, k2,t, u1, u2, h1, h2,
h1, h2) = (0.5, 0.4, 1, 1, 1, 1, 12, 8)

Db = b1 � b2 b1 R1,1 R1,2 R1,3 R1,4 R1,5 R1,6

Setting (1) with (q1, q2) = (8, 12) and b2 = 8:
�4 4 4 3 3 3 3 3
�2 6 2 2 1 1 1 1
0 8 0 0 0 0 0 0
2 10 0 0 0 0 0 0
4 12 0 0 0 0 0 0
Setting (2) with (q1, q2) = (10, 10) and b2 = 10:
�8 2 6 6 6 5 5 5
�6 4 4 4 4 4 3 3
�4 6 3 2 2 2 2 2
�2 8 1 1 1 1 1 1
0 10 0 0 0 0 0 0
Setting (3) with (q1, q2) = (12, 8) and b2 = 12:
�12 0 9 8 8 8 7 7
�10 2 6 6 6 6 5 5
�8 4 5 5 4 4 4 4
�6 6 3 3 3 3 3 2
�4 8 2 2 2 2 2 1

Table 2 The Constant R1,t for t = 1, . . ., 6 with (k1,t, k2,t, q1, q2, b1, b2,
h1, h2) = (0.5, 0.4, 4, 16, 1, 1, 12, 8)

Dh = h2 � h1 h2 R1,1 R1,2 R1,3 R1,4 R1,5 R1,6

Setting (1) with (u1, u2) = (2, 10) and h1 = 0:
0 0 4 4 4 4 4 4
1 1 2 2 2 2 2 2
2 2 1 1 1 1 1 1
3 3 1 1 1 1 1 1
4 4 0 0 0 0 0 0
Setting (2) with (u1, u2) = (6, 6) and h1 = 6:
�6 0 4 4 4 4 4 4
�5 1 2 2 2 2 2 2
�4 2 1 1 1 1 1 1
�3 3 1 1 1 1 1 1
�2 4 0 0 0 0 0 0
Setting (3) with (u1, u2) = (10, 2) and h1 = 12:
�12 0 4 4 4 4 4 4
�11 1 2 2 2 2 2 2
�10 2 1 1 1 1 1 1
�9 3 1 1 1 1 1 1
�8 4 0 0 0 0 0 0
Setting (4) with (u1, u2) = (4, 2) and h1 = 6:
�6 0 4 4 4 4 4 4
�5 1 2 2 2 2 2 2
�4 2 1 1 1 1 1 1
�3 3 1 1 1 1 1 1
�2 4 0 0 0 0 0 0

Table 3 The Constant R1,t for t = 1, . . ., 6 with (q1, q2, b1, b2,
u1, u2, h1, h2) = (10, 10, 2, 10, 1, 1, 1, 1) and (k1,t, k2,t) =
(0.5, 0.4)

Dh = h1 � h2 h1 h2 R1,1 R1,2 R1,3 R1,4 R1,5 R1,6

Setting (1) with h1 = 20:
16 20 4 6 6 6 5 5 5
12 20 8 6 6 6 5 5 5
8 20 12 6 6 6 5 5 5
4 20 16 6 6 6 5 5 5
Setting (2) with h2 = 8:
0 8 8 6 6 6 5 5 5
4 12 8 6 6 6 5 5 5
8 16 8 6 6 6 5 5 5
12 20 8 6 6 6 5 5 5
Setting (2) with h2 = 4:
0 4 4 5 5 4 4 4 4
4 8 4 6 6 6 5 5 5
8 12 4 6 6 6 5 5 5
12 16 4 6 6 6 5 5 5
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We determine the optimal values of y1 and y2 at the
beginning of period 1. Then, we fulfill demand in
the planning horizon based on the following policy.
Let ci,t be the quantity of the fulfilled demand
of class i, i 2 {1, 2}, from period 1 to period
t, t 2 {1, . . ., T}. Then, for the newly realized demand
of class i we fulfill it as long as ci,t + 1 ≤ yi, that is, yi
is the maximum quantity of demand of class i to be
fulfilled during the entire planning horizon.
We set T = 20 and (k1,t, k2,t) = (0.5, 0.4) for any t,

and there is no backorder at the beginning of period
1. The average total profit under the optimal policy
for patient customers, that is, Vopt, and the average
total profit under the simple heuristic policy, Vheu,
are provided in Table 4. The average total profit is
calculated by randomly generating 100,000 sce-
narios of the demand set ðDi;tÞi¼1;2; t¼1;...;T, where

Di,t 2 {0, 1} and D1,t + D2,t ≤ 1. We also present the
percentage of the profit increase under the optimal

policy as DV ¼ 100	 Vopt �Vheuð Þ
Vheu

% and the computa-

tional time of the two policies as Topt and Theu (we
provide the CPU time of the program written by
Fortran). Table 4 indicates that the computational
time of the optimal policy is similar to that of the
simple heuristic policy and even smaller under cer-
tain cases. Moreover, the optimal policy significantly
outperforms the heuristic policy under various
parameter settings. In particular, when the unit
usage cost u2 is sufficiently large and/or the total
capacity level h1 is limited, an appropriate rationing
strategy is required to increase the total profit. In
these cases, the static heuristic policy leads to poor
performance. Thus, the simple heuristic policy is not
recommended for our settings.

6. Extensions

In this section, we consider several extensions of
the model for patient customers: (i) multiple

products; (ii) new capacity additions; and (iii) Mar-
kov modulated demand. Similar extensions can be
made for impatient customers and customers with
limited patience. We refer to the model for patient
customers described in section 4.1 as the basic
model.

6.1. Multiple Products
We generalize the basic model with a single product
to the model with multiple products. Following
Akc�ay et al. (2010), we consider N substitutable prod-
ucts that are only different in their qualities. We
denote by sj the quality index of product j,
j = 1, . . ., N, and assume that s1 > s2 > ��� > sN with-
out loss of generality. An arriving customer can either
choose an available product from the retailer or pur-
chase from others. We normalize the value of the out-
side option to 0 for convenience. The retailer starts
the selling horizon with an initial inventory cj,1 for
product j, j = 1, . . ., N, and cannot replenish inven-
tory during the horizon. Similar to the basic model,
we assume the following property for the unit hold-
ing costs and unit usage costs of the N products:
u1 � h1 ≤ u2 � h2 ≤ ��� ≤ uN � hN.
We consider two types of customers for simplicity:

the high-valuation (H) customers and the low-valuation
(L) customers with H > L. The high-valuation cus-
tomers have a higher unit waiting cost than the low-
valuation customers, that is, bH ≥ bL. We denote by kt
the probability that demand is realized in period t and
pH,t (resp., pL,t) the probability that the realized demand
has a high (resp., low) valuation. For the customers with
valuation K, K 2 {H, L}, the retailer sets the selling
prices qK1, qK2, . . ., qKN for theN products.
Note that, with multiple types of customers, decid-

ing on the optimal pricing scheme is complicated and
out of the scope of this study. Hence, we consider an
applicable pricing scheme that has been thoroughly
studied in the literature. To ensure the priority prop-
erties as in Lemma 1, we adopt the pricing scheme in

Table 4 The Value of the Optimal Policy Against the Heuristic Policy with T = 20 and (k1,t, k2,t) = (0.5, 0.4) for t = 1, . . ., T.

(h1, h2) = (16, 8), (u1, u2) = (1, 1) (q1, q2)
(2, 6) (6, 10) (10, 14) (10, 16) (10, 22) (10, 26)

Vopt(Topt) 48.0 (0.422) 111.7 (0.469) 175.5 (0.438) 207.5 (0.422) 239.4 (0.453) 271.6 (0.422)
Vheu(Theu) 42.9 (0.438) 105.1 (0.422) 167.4 (0.328) 194.7 (0.469) 221.9 (0.407) 249.2 (0.438)
DV (%) 11.9 6.28 4.84 6.57 7.89 8.99

(h1, h2) = (16, 8), (q1, q2) = (6, 20) (u1, u2)
(1, 3) (3, 5) (5, 7) (5, 10) (5, 13) (5, 16)

Vopt(Topt) 175.8 (0.422) 143.7 (0.453) 119.1 (0.438) 116.6 (0.422) 113.9 (0.438) 111.5 (0.406)
Vheu(Theu) 158.4 (0.422) 127.1 (0.406) 96.1 (0.391) 73.3 (0.422) 50.7 (0.438) 27.9 (0.407)
DV (%) 11.0 13.1 23.9 59.1 124.7 299.6

(u1, u2) = (1, 3), (q1, q2) = (4, 12) (h1, h2)
(4, 4) (10, 4) (16, 4) (16, 7) (16, 10) (16, 13)

Vopt(Topt) 35.8 (0.421) 84.2 (0.421) 103.9 (0.421) 97.9 (0.421) 91.9 (0.421) 85.9 (0.406)
Vheu(Theu) 18.2 (0.421) 57.5 (0.421) 94.2 (0.406) 88.3 (0.406) 82.2 (0.406) 76.2 (0.437)
DV (%) 96.7 46.4 10.3 10.9 11.8 12.7
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Akc�ay et al. (2010) for each type of customer. This
pricing scheme is optimal if there is only one demand
class.
We then introduce the pricing scheme in Akc�ay

et al. (2010) and also the customer choice model
below. For each type of customer, the prices
qK1, qK2, . . ., qKN for each K 2 {H, L} satisfy the
following constraints:

1� qK1
Ks1

� qK2
Ks2

� �� � � qKN
KsN

[0;

1� qK1�qK2
Kðs1�s2Þ �

qK2�qK3
Kðs2�s3Þ � � � � � qKðN�1Þ�qKN

KðsN�1�sNÞ �0;

(
K2fH;Lg:

Let aj(qK) be the choice probability for product j and
a0(qK) be the probability of no purchase from the
retailer. Then, the choice probability of a consumer
with valuation K under this pricing scheme is

ajðqKÞ ¼

1� qK1�qK2
Kðs1�s2Þ j ¼ 1

qKðj�1Þ�qKj
Kðsj�1�sjÞ �

qKj�qKðjþ1Þ
Kðsj�sjþ1Þ j ¼ 2; . . .;N � 1

qKðN�1Þ�qKN
KðsN�1�sNÞ �

qKN
KsN

j ¼ N
qKN
KsN

j ¼ 0.

8>>>><
>>>>:

ð12Þ

Akc�ay et al. (2010) also indicate that under this pric-
ing scheme, the highest-quality product alone has a
positive choice probability. That is, if the products
1, . . ., j � 1 are out of stock, then the pricing scheme
must satisfy the constraint

qKj � qKðjþ1Þ
Kðsj � sjþ1Þ ¼ � � � ¼ qKðN�1Þ � qKN

KðsN�1 � sNÞ
¼ qKN

KsN
; K 2 fH; Lg:

With the pricing scheme in Akc�ay et al. (2010), we
sell the products sequentially in descending order of
product quality. That is, if product j is the highest-
quality product available for sales, then products
1, . . ., j � 1 are out of stock and the capacity of prod-
ucts j + 1, . . ., N does not affect the selling strategy as
customers only choose product j. In this sense, the
basic model can be used to analyze the capacity allo-
cation problem for each product j independently,
where the product j of interest has the highest quality
among the available products. Note that under the
pricing scheme in Akc�ay et al. (2010), qKj is propor-
tional to K and hence qHj ≥ qLj for any j = 1, . . ., N.
We thus have the properties u1 � h1 ≤ u2 � h2 ≤
��� ≤ uN � hN and qHj + bH ≥ qLj + bL for any j. There-
fore, all of the results of the basic model still hold.
We can also generalize the basic model to capacity

allocation problems with multiple products when
the customer choice is assortment based, that is,
unaffected by the availability of products and
depend only on the specific assortment of products
(Goyal et al. 2016). Here, if customers do not switch

to other products when their preferred products are
out of stock, then the demand for each product is
independent of the availability of products and
hence the capacity allocation problem of each pro-
duct can be considered individually. Essentially, the
results of the basic model can be preserved for mul-
tiple products only when a sequential selling prop-
erty holds among different products. However, they
may not hold for more general scenarios.
It is worth noting that the assortment planning

problem studied by Goyal et al. (2016) is related to
our model for impatient customers with multiple
products. However, our focus is different from
theirs. We focus on the capacity allocation problem
during the selling season by fixing the capacity of
different suppliers at the beginning. Due to the
price scheme in Akc�ay et al. (2010), the optimal
capacity allocation policy can be obtained by an
efficient algorithm. In contrast, Goyal et al. (2016)
consider the joint assortment and inventory order-
ing problem, that is, they decide which products to
offer and how many units to stock for each offered
product. Under the general customer choice models
in Goyal et al. (2016), they show that the problem is
NP hard and hence provide an approximation
scheme for several interesting and practical cus-
tomer choice models.

6.2. New Capacity Additions
In the basic model, we assume that the capacity
reserved from different suppliers is fixed before the
selling season. In practice, new capacity may be
added over time. In this subsection, we show that the
results of the basic model still hold if there is a fixed
schedule of capacity additions. Specifically, we
assume that in each period t, t = 1, . . ., T, a fixed
amount of capacity of supplier j, denoted by ctj , is
added to the system for j = 1, . . ., m. The MDP for
this case is presented below.
Define Θt = (hj,t)j=1,. . .,m and Ĥt ¼ ðĥj;tÞj¼1;...;m, where

hj;t ¼
Pm

k¼j ck;t þ
Pt�1

s¼1

Pm
k¼j c

s
k;

ĥj;t ¼
Pm

k¼j c
t
k:

(

Moreover, hj;tþ1 ¼ hj;t þ ĥj;t for any j = 1, . . ., m and
t = 1, . . ., T. Let (zt ∧ Θt, zw,t) be the system state at
the beginning of period t. Then the state transits to
ðzt ^ Ht þ Ĥt; zw;t þ ĥ1;teÞ, where e is the unit vector
with all of the elements being 1, before the demand
realization in period t. Then, the MDP is given as

vtðzt ^Ht; zw;tÞ ¼
Xn
r¼1

�r;tgtðzt ^Ht; zw;t � e½1;r�Þ

þ ð1� �tÞgtðzt ^Ht; zw;tÞ;
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where

gtðzt ^H; �zw;tÞ ¼ max
0_ð�zmþ1;tþĥ1;tÞ� ztþ1 �ðztþĥ1;tÞ"

vtþ1 ztþ1 ^Htþ1; ztþ1 ^ ð�zw;t þ ĥ1;teÞ
� �

:

�
Xm
j¼1

ujðzt ^ hj;t þ ĥj;t � zt ^ hjþ1;t � ĥjþ1;tÞ

þ
Xm
j¼1

ðuj � hjÞðztþ1 ^ hj;tþ1 � ztþ1 ^ hjþ1;tþ1Þ

þ
Xn
i¼1

qið�zmþiþ1;t � ð�zmþi;t _ ðztþ1 � ĥ1;tÞÞ ^ �zmþiþ1;tÞ

�
Xn
i¼1

biðð�zmþi;t _ ðztþ1 � ĥ1;tÞÞ ^ �zmþiþ1;t � �zmþi;tÞ
#
:

The terminal condition is vT+1(zT+1 ∧ Θ, zw,T+1) � 0
for any (zT+1, zw,T+1).
As ĥj;t is a constant for any j = 1, . . ., m and

t = 1, . . ., T, the analysis of this model is the same as
the basic model and the new capacity additions do
not change the structure of the optimal capacity allo-
cation policy as in the basic model.

6.3. Markov Modulated Demand
In this section, we show how to extend the results of
the basic model to Markov modulated demand. There
is a Markov chain xt, named the world as in Zipkin
(2008). The arrival probability kt(xt) of a customer in
period t depends on the current world state. Let xt+1

be the world state in the next period given the current
state xt. The MDP is given as follows:

vtðzt ^H; zw;t;xtÞ

¼ Extþ1jxt

Xn
r¼1

�r;tðxtÞgtðzt ^H; zw;t � e½1;r�;xtþ1Þ
"

þð1� �tðxtÞÞgtðzt ^H; zw;t;xtþ1Þ
�
;

where

gtðzt ^H; �zw;t;xtþ1Þ ¼
max

0_�zmþ1;t � ztþ1 � zt
vtþ1ðztþ1 ^H; ztþ1 ^ �zw;t;xtþ1Þ
�

�
Xm
j¼1

ujðzt ^ hj � zt ^ hjþ1Þ

þ
Xm
j¼1

ðuj � hjÞðztþ1 ^ hj � ztþ1 ^ hjþ1Þ

þ
Xn
i¼1

qið�zmþiþ1;t � ð�zmþi;t _ ztþ1Þ ^ �zmþiþ1;tÞ

�
Xn
i¼1

biðð�zmþi;t _ ztþ1Þ ^ �zmþiþ1;t � �zmþi;tÞ
#
:

The remainder of the analysis of this MDP is similar
to that of the basic model, except that now the opti-
mal capacity allocation policy also depends on the
current state of the world.

7. Concluding Remarks

In this study, we analyze the capacity allocation prob-
lem with a single product, multiple suppliers and
multiple demand classes. The units reserved from dif-
ferent suppliers are identical to customers but incur
different unit usage costs and different unit holding
costs for the retailer. We consider three types of cus-
tomers: patient customers, impatient customers, and
customers with limited patience. We also discuss how
to incorporate multiple products, new capacity addi-
tions and Markov modulated demand into the models
in the extension.
To analyze our problems, we derive a new result

for the preservation of decomposition and, based on
this result, show that the value functions are decom-
posable for three types of customers. We then charac-
terize the optimal capacity allocation policy as the
NPL policy for patient customers and customers with
limited patience. For impatient customers, we show
that the CSPL policy is optimal for the capacity alloca-
tion. We also develop efficient algorithms to obtain
these optimal policies based on the decomposition of
the value functions.
In future studies, we may incorporate more cus-

tomer choice and/or dynamic pricing into the basic
models in this study. However, those models are
quite different from the models in this study. They
shall be addressed by some other techniques and
hence deserve separate research. We conjecture that
for those models, value functions may no longer be
decomposable and we need to use a different frame-
work (such as a dynamic game), and perhaps develop
new methodologies for their analysis.
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Notes

1The firm uses air freight if the goods are drop-shipped
from the global supplier.
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2As in Chu et al. (2008), a grocery retail chain in Spain has
a high-low promotion policy and practices zone pricing
for its offline stores.
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