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Abstract: This article considers the problem of monitoring Poisson count data when sample sizes are time varying without assum-
ing a priori knowledge of sample sizes. Traditional control charts, whose control limits are often determined before the control
charts are activated, are constructed based on perfect knowledge of sample sizes. In practice, however, future sample sizes are often
unknown. Making an inappropriate assumption of the distribution function could lead to unexpected performance of the control
charts, for example, excessive false alarms in the early runs of the control charts, which would in turn hurt an operator’s confidence
in valid alarms. To overcome this problem, we propose the use of probability control limits, which are determined based on the
realization of sample sizes online. The conditional probability that the charting statistic exceeds the control limit at present given
that there has not been a single alarm before can be guaranteed to meet a specified false alarm rate. Simulation studies show that our
proposed control chart is able to deliver satisfactory run length performance for any time-varying sample sizes. The idea presented
in this article can be applied to any effective control charts such as the exponentially weighted moving average or cumulative sum
chart. © 2013 Wiley Periodicals, Inc. Naval Research Logistics 00: 000–000, 2013

Keywords: average run length; exponentially weighted moving average; false alarm rate; healthcare; run length distribution;
statistical process control

1. INTRODUCTION

Statistical process control (SPC) charts have been widely
applied in many applications including industrial quality
control, service operations management, and healthcare sur-
veillance [20, 22]. In particular, monitoring the occurrence
of a rare event from a sequence of stochastic processes
has received considerable attention recently, for example,
the detection of nonconformities in precise machining and
manufacturing, the detection of an increase in the rate of peo-
ple visiting an emergency room, the mortality rate of heart
surgery [15], and the number of cancer patients [14]. In gen-
eral, once the SPC charts are activated, the detection aims
to issue an out-of-control (OC) signal as early as possible
once an adverse event occurs. Meanwhile, the false alarm
rate needs to be controlled to avoid excessive interventions
of the control charts.
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To detect changes in the occurrence rate of an adverse
event, both the count of events recorded at regular time inter-
vals and the corresponding sample size must be available. For
example, in manufacturing quality control, a sample of prod-
ucts with size nt is inspected and the number of nonconformi-
ties in the sampled products is monitored to detect possible
increases in the incidence rate of nonconformities. Usually,
one assumes that the count of events or nonconformities fol-
lows a (conditionally) independent Poisson distribution given
the corresponding sample size. When the sample size is a
constant, detecting a change in the rate could be achieved
simply by detecting a change in the Poisson mean. Several
control charts have been proposed including the Shewhart
chart [13], the cumulative sum (CUSUM) chart [10, 21],
and the exponentially weighted moving average (EWMA)
chart [4, 5, 8]. In practice, these control charts have been
successfully implemented in manufacturing quality control.

In some applications such as healthcare surveillance, the
sample size refers to the population at risk, which, however,
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often changes over time. Increasing attention has thus been
paid to the problem of monitoring the occurrence rate of an
adverse event with time-varying sample sizes in prospective
analysis (called Phase II in SPC). Under the assumption that
the time-varying sample size can be characterized by a (deter-
ministic) logistic function, Mei et al. [12] proposed three
CUSUM-based control charts taking into account the time-
varying sample sizes. Shu et al. [18] compared a weighted
CUSUM and conventional CUSUM procedures. Dong et al.
[3] proposed to monitor the EWMA statistic of incidence rate
estimator. Ryan and Woodall [17] compared CUSUM meth-
ods with the EWMA chart by Dong et al. [3] assuming that
the sample size follows a uniform distribution, and suggested
a modified EWMA chart by adding a lower reflecting bar-
rier. Zhou et al. [25] proposed a new EWMA method based
on weighted likelihood estimation and testing. All this work
was built on the assumption that the sample size follows a
prespecified random or deterministic model, which is known
a priori when establishing appropriate control limits before
the control charts initiate. Unfortunately, as Zhou et al. [25]
pointed out, traditional control charts are very sensitive to the
specification of sample sizes.

In practice, our knowledge about time-varying sample
sizes is often very limited. A practical solution is to esti-
mate the sample size distribution function based on a set of
historical observations. But when the historical observations
are limited, the estimation would inevitably be unreliable
and model misspecification and/or estimation errors would
lead to unacceptable performance of the control charts [25].
To overcome this problem, this article proposes the use of
probability control limits in an EWMA control chart for mon-
itoring Poisson count data with time-varying sample sizes in
Phase II process monitoring. No matter what the (unknown)
time-varying sample sizes are, the proposed EWMA chart
always shares an identical run length distribution with the
geometric distribution and is thus called the EWMAG chart.
Essentially, the EWMAG chart uses dynamic control limits
which are determined online and depend only on the current
and past sample size observations. There is no need to spec-
ify any sample size models before implementation except
the desired false alarm rate. Although only the EWMA-type
chart is discussed in this article, the key idea can be similarly
applied to any effective traditional control charts such as the
CUSUM chart. The center of our proposal is to maintain the
conditional probability (the probability that the charting sta-
tistic exceeds the control limit given that there is no alarm
before the current time point) to the specified false alarm rate
at each time point. To dynamically determine the probabil-
ity control limit online, a simulation-based procedure and a
Markov chain procedure are discussed.

The remainder of this article is organized as follows. We
first discuss the statistical model and some previous work in
Section 2. The new EWMA control chart with probability

control limits is then proposed in Section 3, followed by a
performance study of the proposed control chart in Section
4. Section 5 focuses on a specific healthcare surveillance
example to demonstrate the application of the EWMAG chart.
Finally, several remarks draw the article to its conclusion in
Section 6.

2. THE STATISTICAL MODEL

Let Xt be the count of adverse events during the fixed time
period (t − 1, t]. For simplicity, we will call it the count of
events at time t. Suppose Xt independently follows the Pois-
son distribution with the mean θnt conditional on nt , where θ

and nt denote the occurrence rate of the event and the sample
size at time t, respectively. To detect an abrupt change in the
occurrence rate from θ0 to another unknown value θ1 > θ0 at
some unknown time τ , we use the following change-point
model,

Xi

i.d∼
{

Poisson (θ0ni |ni) for i = 1, . . . , τ − 1

Poisson (θ1ni |ni) for i = τ , . . . ,
(1)

where the symbol i.d∼ denotes “independently distributed.”

The objective is to detect the change as soon as possible after
it occurs through the sequential counts.

In the change-point detection problem, a detection rule is
often characterized by a charting statistic a (nt , Xt ) and a
control limit h (nt ) determined based on the historical data
set {ni , Xi}1≤i≤t , where nt = {ni : 1 ≤ i ≤ t} and Xt =
{Xi : 1 ≤ i ≤ t}. The stopping time T is defined as

T = min {t : a (nt , Xt ) > h (nt )} . (2)

T = t means that an alarm (OC signal) is issued at time t for
the first time to declare that a change has occurred at some
point during the time period [1, t]. Similar to the literature on
healthcare surveillance, this study focuses on the detection of
an increase in the occurrence rate, that is, θ1 > θ0. Thus only
the upward shift is studied in this article. The detection of
downward and two-sided shifts can be constructed similarly
without much difficulty. Note that the control limit h (nt )

depends only on nt and not Xt .
Several control charts have been developed for Poisson

count data in previous studies. In the following, we will dis-
cuss in detail two EWMA charts proposed by Dong et al. [3]
and Ryan and Woodall [17], respectively, and one CUSUM
chart suggested by Mei et al. [12].

The statistic of the EWMA-type control chart proposed by
Dong et al. [3] is

Zi = (1 − λ) Zi−1 + λ
Xi

ni

, (3)
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where i = 1, 2, . . . , t , Z0 = θ0, and λ ∈ (0, 1] is a smoothing
parameter which determines the weights of past observations.
Derived from the EWMA sequence, the first EWMA control
chart proposed by Dong et al. [3], termed EWMAe, has a
stopping rule,

TEWMAe = min {t ; Zt ≥ θ0 + Lσt , t ≥ 1} ,

σ 2
t = λ2

t∑
i=1

(1 − λ)2t−2i θ0

ni

. (4)

The control limit constant L is determined by the nomi-
nal value of the in-control (IC) average run length (ARL),
usually termed ARL0. To avoid the problem of inertia, Ryan
and Woodall [17] modified the EWMAe method by adding a
lower reflecting barrier at Zt = θ0, that is,

TEWMAM = min
{
t ; Z̃t ≥ Lσt , t ≥ 1

}
, (5)

where

Z̃t = max

{
θ0, (1 − λ) Z̃t−1 + λ

Xt

nt

}
, Z̃0 = θ0.

This method is referred to as the EWMA-modified
(EWMAM) control chart. The CUSUM chart proposed by
Mei et al. [12] is given by

Wt = max

{
0, Wt−1 +

[
Xt log

θ1

θ0
− nt (θ1 − θ0)

]}
,

which sounds an alarm when Wt > LC , where W0 = 0. Its
control limit LC is determined to achieve the desired ARL0.

To determine the control limit or control limit constant for
these control charts with time-varying sample sizes, the dis-
tribution of the sample size nt has to be assumed known a
priori. As discussed in Section 1, there is usually very little
foreknowledge about the future distribution of sample sizes,
especially when the population at risk may be subject to sud-
den changes due to certain events such as an outbreak of war,
famine, or natural disaster. Once the assumption on the dis-
tribution deviates significantly from reality, the control limit
determined based on the assumption becomes inappropriate
and may result in undesired false alarm rates accordingly.
This in turn hurts an operator’s confidence in valid alarms. To
address this issue, an EWMA control chart with probability
control limits is proposed in the next section.

3. AN EWMA CHART WITH PROBABILITY
CONTROL LIMITS

3.1. The EWMAG Chart

We use the EWMA-type control chart statistic (3) as the
charting statistic in the following discussion of the probability

control limits. The proposed EWMA control chart with prob-
ability control limits is referred to as an EWMAG chart
because its IC run length distribution is theoretically iden-
tical to the geometric distribution, that is, the false alarm rate
does not depend on the time of monitoring, nor the sample
sizes being monitored.

The control limit of the EWMAG chart is set so that the
conditional probability, that is, the probability that the chart-
ing statistic exceeds the control limit given no prior alarms,
is equal to a specified false alarm rate. To be more specific,
we want to find the control limits satisfying the following
equations,

Pr (Z1 > h1 (α) |n1) = α,
Pr (Zt >ht (α) |Zi <hi (α) , 1 ≤ i <t , nt ) = α for t >1,

(6)

where α is the prespecified false alarm rate. This is equiva-
lent to performing a hypothesis test with the type-I error α at
each time point t. Therefore, the corresponding IC run length
distribution is exactly the geometric distribution [6]. At time
t, the probability control limit is determined right after we
observe the value of nt . Consequently, the EWMAG chart
does not need to know future sample sizes and is not con-
cerned about wrong assumptions being made. This property
makes the proposed EWMAG chart significantly different
from previous control charts.

It is worth noting that the idea of using time-varying control
limits has been adopted in the literature of selfstarting con-
trol schemes. As indicated in those studies, the probabilities
of false alarms from a chart may increase dramatically after
short-runs if a fixed control limit is applied. The approach
of using dynamic control limits was originally proposed by
Margavio et al. [11] and Lai [9] and has been successfully for-
malized and utilized by Hawkins et al. [7] in the parametric
change-point-based control charts with unknown IC parame-
ters. See also Zou and Tsung [24] for a related discussion.
However, it should be emphasized here that our procedure dif-
fers from all of the above in the sense that the control limits in
our procedure are determined online along with the process
observations rather than decided before monitoring. That is,
the control limits are data dependent. This is a unique feature
of our procedure and is designed to tackle the time-varying
population size nt .

Due to the intricacy of the conditional probability (6), solv-
ing ht (α) analytically is tricky. Thus two computational pro-
cedures, a simulation-based one and a Markov chain one, are
suggested to approximate ht (α). Though only the EWMA-
type control chart is discussed here, the two computational
procedures can be applied to other charts such as the CUSUM
chart with probability control limits.

Naval Research Logistics DOI 10.1002/nav
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3.2. Computational Procedures for Probability
Control Limits

First, we introduce the simulation-based procedure for
computing the probability control limits. To explain this pro-
cedure clearly, let us start by considering the first time point
t = 1. Under the IC condition, X1 should follow the Pois-
son distribution with mean θ0n1, where n1 is known exactly.
Therefore, we can obtain the control limit at the first time
point by randomly generating X̂1,i , where i = 1, . . . , M
and M is a sufficiently large integer, from the distribution
Poisson (θ0n1) and correspondingly calculating M values of
pseudo Z1 from (3) with Z0 = θ0, say Ẑ1,1, . . . , Ẑ1,M . We
then sort those values in ascending order and store them in
a vector Ẑ1M . The control limit h1 (α) can be approximated
by the M ′ = �M (1 − α)� largest value in Ẑ1M , where �A�
denotes the largest integer less than or equal to A. Theoreti-
cally, if M → ∞, the equation Pr (Z1 > h1 (α)) = α can be
exactly satisfied. In this article, M is set to 50,000 to obtain
an appropriate control limit at each time point. After deter-
mining the control limit h1 (α), we compare the value of Ẑ1,
which is calculated based on the observed X1 and n1, with
h1 (α). An OC signal is issued if Ẑ1 > h1 (α). Otherwise, we
continue to the next time point t = 2.

According to (6), to determine the control limit h2 (α),
we should ensure that the value of pseudo Z1 is less than or
equal to h1. Hence, only the ranked values Ẑ1,(1), . . . Ẑ1,(M ′)
should be kept to determine h2 (α). We store the M ′ ranked
pseudo Z1 into a vector Ẑ

′
1M ′ . Given n2, a vector Ẑ2M with

the dimension M can then be obtained by

Ẑt ,i = (1 − λ) Ẑt−1,j + λ
X̂t ,i

n2
(7)

where t = 2, i = 1, . . . , M , Ẑ1,j is uniformly selected from

Ẑ
′
1M ′ with j ∈ {

1, . . . , M ′}, and X̂2,i are randomly generated

from Poisson (θ0n2). By sorting the M elements of Ẑ2M in
ascending order, we can obtain the control limit h2 (α) by
setting it at the (1−α)-quantile of the M elements. Again we
keep the ranked statistics Ẑ2,(1), . . . , Ẑ2,(M ′) to the next stage
t = 3. Repeat the above procedure by simulating M samples
of Poisson (θ0n3) , . . . , and so forth. The simulation-based
procedure is summarized in the following algorithm:

Algorithm 1 (Simulation-based procedure)

1. If there is no OC signal at time t – 1
(t = 1, 2, . . . ) , X̂t ,i (i = 1, . . . , M) are generated
from the distribution Poisson (θ0nt ) where nt is
known exactly. Accordingly, M values of the pseudo
charting statistic Zt are obtained through (7).

2. Sort the M values in ascending order and the α upper
empirical quantile of those M values is used for
approximating the control limit ht (α).

3. Compare the value of Ẑt , which is calculated based
on the observed Xt and nt , with ht (α) to decide
whether to issue an OC signal or to continue to the
next time point.

4. If it is decided to continue, set M ′ = �M (1 − α)�
and eliminate the values Ẑt ,(M ′+1), . . . , Ẑt ,(M). Go
back to step 1.

Next, we turn our attention to the Markov chain procedure
for computing the probability control limits. The Markov
chain model described here can be considered as an extension
of the methods proposed by Brook and Evans [2] and Borror
et al. [1]. However, different from the previous methods, our
Markov chain procedure is designed specially for monitor-
ing the occurrence rate when sample sizes are time varying.
Before discussing this procedure in detail, we first introduce
a critical idea of this procedure, as well as some concepts
including bounds of charting statistics and states.

At time t, the value of charting statistic Zt is within an
interval with two-sided bounds. As Zt = (1 − λ) Zt−1 +
λXt/nt and Xt ≥ 0, we can simply set the lower bound
L = 0 and search for the upper bound U with the constraint
Pr (Zt ≤ U) = 1 − ξ , where ξ > 0 is a sufficiently small
constant at each time point. In this study, we set ξ = 1e−16.
After determining the two-sided bounds, we divide the inter-
val (L, U) equally into K partitions (states). Then the ith state
is the subinterval (Li , Ui), where

Li = L + (i − 1) (U − L)

K
and Ui = L + i (U − L)

K
.

The corresponding midpoint, mi , of the ith state can be
determined by mi = L + (2i − 1) (U − L) /2K . When
Zt falls into the ith state at the time t, we have Li <

(1 − λ) Zt−1 + λXt/nt ≤ Ui , which is equivalent to

nt

[
Li − (1 − λ) Zt−1

]
λ

< Xt ≤ nt

[
Ui − (1 − λ) Zt−1

]
λ

.

(8)

The probability that Zt is within the ith state, conditioned
on Zt−1 = mj (i, j ∈ {1, . . . , K}), can be obtained by calcu-
lating the corresponding probability of Xt as its probability
density function is f (Xt) = e−θ0nt (θ0nt )

Xt /Xt !.
To clearly describe the procedure, we again start by con-

sidering the first time point t = 1. As Z0 is specified as θ0, we
consider that Z0 is in the point θ0 with probability 1 at time
t = 0. At time t = 1, given Z0 and n1, we first determine the
upper bound U with the constraint

Pr(Z1 ≤ U) = Pr

(
X1 ≤ n1 (U − (1 − λ) Z0)

λ

)
= 1 − ξ ,

Naval Research Logistics DOI 10.1002/nav
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and then divide the interval into K states. The probability that
Z1 falls into the ith state can be easily calculated by

Pr (Z1 ∈ state i|Z0)

=

⎧⎪⎪⎨
⎪⎪⎩

Pr
(

n1[Li−(1−λ)Z0]
λ

< X1 ≤ n1[Ui−(1−λ)Z0]
λ

)
,

if � n1[Li−(1−λ)Z0]
λ

� < � n1[Ui−(1−λ)Z0]
λ

�,

0, otherwise ,

(9)

where i = 1, . . . , K . We then obtain a vector of K probabili-
ties at time t = 1, P1 = (p1, p2, . . . , pK)′, where the element
pi is equal to the value of Pr (Z1 ∈ state i|Z0). The control
limit h1 (α) at time t = 1 is determined as the upper bound Ur

of the rth state, where

r = arg min

{
j :

j∑
i=1

pi ≥ 1 − α

}
, j = 1, 2, . . . , K . (10)

If Ẑ1 < h1 (α) at time t = 1, where Ẑ1 is calculated based
on the observed X1 and n1, the process is declared as IC and
we can proceed to the next stage t = 2. Otherwise, an alarm
should be issued.

At time t = 2, we first deal with Z1 because Z2 is partially
dependent on it. The restriction of Z1 < h1 (α) requires us
to keep only the r states of Z1 and store their normalized
probabilities p̃j = pj/

∑r
j=1 pj (j = 1, . . . , r) into a vector

P̃1 = (p̃1, . . . , p̃r )
′. For any value of Z1 in the jth state, it

is represented by Z1j = mj where j = 1, . . . , r . Then, all
possible values of Z1 considered at time t = 2 are the r ele-
ments of Z1 = (Z11, Z12, . . . , Z1r )

′. Given Z1 = Z1r and n2,
the upper bound U of Z2 can then be determined with the
constraint

Pr (Z2 ≤ U) = Pr

(
X2 ≤ n2 [U − (1 − λ) Z1r ]

λ

)
= 1 − ξ .

(11)

Again, we divide the interval (0, U) into K states. When
Z1 = Z1j , K conditional probabilities of Z2 are obtained and
stored in a vector P2j = (

p1j , p2j , . . . , pKj

)′
, where pij =

Pr
(
Z2 ∈ state i|Z1j , n2

)
, i = 1, . . . , K and j ∈ {1, . . . , r}.

Let pi be the probability that Z2 falls into the ith state given
that Z1 is IC. The vector of conditional probabilities of
Z2, P2 = (p1, p2, . . . , pK)′, is calculated as

P2 = (P21, P22, . . . , P2r )(K×r)P̃1(r×1). (12)

With the conditional probabilities of Z2, the control limit
h2 (α) at time t = 2 is approximated by the upper bound of
the rth state satisfying (10). The procedure is summarized in
the following Algorithm 2.

Algorithm 2 (Markov chain procedure)

1. If there is no OC signal at time t – 1 (t = 1, 2, . . . ),
calculate the vector P̃t−1 storing r normalized prob-
abilities and the vector Zt−1 containing the values
of r midpoints. Both vectors are of the size (r × 1).
Specially, at time 0, we have r = 1, P̃0 = 1, and
Z0 = θ0.

2. Always set the lower bound, L, to 0 and search for the
upper bound, U, of Zt based on the value of Z(t−1)r

and divide the interval (L, U) into K states.
3. For each Z(t−1)j , j = 1, . . . , r , compute the proba-

bility vector Ptj of size (K × 1). Then the vector
of conditional probabilities can be obtained through
formula (12).

4. Compare the value of Ẑt calculated based on the
observed Xt and nt with the determined control limit
at time t. The control limit, ht (α), is chosen to be
the upper bound of the rth state satisfying (10). If
Ẑt > ht (α), an OC signal should be issued. Other-
wise, go back to step 1 and continue to the next time
point.

3.3. Comparison of the Two Computational
Procedures

As discussed before, theoretically the EWMAG chart has
an identical IC run length distribution to that of the geo-
metric random variable, although its design does not require
any knowledge of nt . To verify this statement and compare
the two computational procedures, we conduct simulation
studies under various scenarios of sample size. In healthcare
surveillance, Mei et al. [12] suggested modeling population
growth using the logistic model. A constant sample size [3]
and a uniformly distributed nt [17] have also been consid-
ered. In particular, the following four scenarios are used in
our simulation studies.

(I) Increasing Scenario: nt = c1
C(0.5+exp{−(t−c2)/c3}) ,

where C = 1 or 8;
(II) Decreasing Scenario: nt = c1/2.4

1+exp{(t−c2)/c3} + C,
where C = 1 or 7;

(III) Constant Scenario: nt = 4.5 or nt = 10;
(IV) Uniform Scenario: nt ∼ U (1, 4) or nt ∼ U (5, 18),

In Scenarios (I) and (II) c1 = 13.8065, c2 = 11.8532, and
c3 = 26.4037 which are the same as those in Mei et al. [12].
Notice that each scenario is set to have different parameters,
for example, different C’s and different constant values. For
conciseness, we choose one setting only in each scenario for
testing in this section.

Under each scenario, we set the desired false alarm rate
α = 0.0027 and accordingly the desired ARL0 should be

Naval Research Logistics DOI 10.1002/nav
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Table 1. IC performance of the EWMAG chart with the simulation-based procedure; θ0 = 1.

Distribution ARL0 SE SDRL Q(.10) Median Q(.90) FAR

(I) [C = 8] 372 1.66 372 40 258 857 0.0781
(II) [C = 1] 371 1.67 373 39 256 854 0.0805
(III) [nt = 4.5] 370 1.65 369 39 258 849 0.0805
(IV) [U(1,4)] 369 1.66 370 37 256 846 0.0826
Geometric 370 — 370 39 256 852 0.078

approximately 370. For illustration, the control chart perfor-
mance is summarized using ARL0, percentiles of the mar-
ginal distribution of the run length, and standard deviation
of the run length (SDRL). Besides these quantities, we also
study the false alarm rate (FAR) for the first 30 observations,
P (T ≤ 30|in − control ). We set θ0 = 1 and the smoothing
parameter λ = 0.1 and use Monte Carlo simulations of 50,000
replications to estimate the run length distribution of the
EWMAG chart. The Fortran codes for implementing the
EWMAG chart is available from the authors upon request.

Tables 1 and 2 summarize the simulation results of the
EWMAG charts using the simulation-based and Markov
chain procedures, respectively. M in the simulation-based
procedure is set as 50,000 and K in the Markov chain
procedure is chosen as 3000. We use the notations
SE , Q (.10) , Q (.90) and FAR for the standard error of ARL0

estimation, the 10th percentile, the 90th percentile, and the
false alarm rate, respectively. The IC run length distribution
is considered to be satisfactory here if it is close to the geo-
metric distribution or more generally if it varies to a lesser
extent than the geometric distribution. As a reference, when
the run length distribution is geometric, the SDRL should be
approximately equal to ARL0 and Q (.10) , Q (.90), and FAR
should be about 39, 852, and 0.078, respectively.

Under Scenarios (I)–(IV), the values of ARL0 obtained
from the EWMAG charts based on the two procedures are
apparently close to the desired value of 370 (the slight devi-
ation is due to simulation errors). SDRL , Q (.10) , Q (.90),
median, and FAR are all approximately equal to the respective
theoretical values. That is, the EWMAG chart has an iden-
tical IC run length distribution to the geometric distribution
and the two proposed calculation procedures have a similar
design and perform similarly well. Therefore, we will use
only the simulation-based procedure in the following studies

when evaluating the EWMAG chart because it is faster in
implementation.

4. PERFORMANCE COMPARISON

In this section, the performance of the EWMAG chart is
compared with that of the EWMAe, EWMAM, and CUSUM
charts under the four scenarios of time-varying sample sizes
discussed previously. We set the false alarm rate α = 0.0027
and choose the smoothing parameter of EWMA-type control
charts as λ = 0.1, and θ0 = 1 of the CUSUM chart as in Mei et
al. [12]. To make a comprehensive comparison, we consider
the performance under both the IC and OC situations.

4.1. IC Performance

Assume that population sizes are known exactly. Figure 1
presents the IC run length distribution of the four control
charts (EWMAe, EWMAM, CUSUM, and EWMAG) under
the four scenarios considered in Section 3.3. As expected, the
run length distribution curve of the EWMAG chart merges
with that of the geometric distribution, which verifies again
that the IC run length distribution of the proposed EWMAG
chart is exactly the geometric distribution. In contrast, the
curves of the other three control charts deviate significantly
from the geometric distribution curve to different degrees
under various scenarios. In particular, the EWMAe chart
often has higher probabilities of giving false alarms than the
geometric distribution, especially under Scenarios (I), (III),
and (IV), whereas the CUSUM chart has considerably lower
probabilities of doing so than the geometric distribution under
Scenario (I).

The IC ARLs of the EWMAe, EWMAM, and CUSUM
charts with misspecified models are reported in Table 3.

Table 2. IC performance of the EWMAG chart with the Markov chain procedure; θ0 = 1.

Distribution ARL0 SE SDRL Q(.10) Median Q(.90) FAR

(I) [C = 8] 370 1.65 369 39 258 843 0.0785
(II) [C = 1] 372 1.66 370 40 259 858 0.0765
(III) [nt = 4.5] 371 1.67 373 39 257 852 0.0796
(IV) [U(1,4)] 372 1.67 373 40 257 852 0.0769
Geometric 370 — 370 39 256 852 0.078
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Figure 1. Comparison of the IC run length distribution among the EWMAe, EWMAM, CUSUM, and EWMAG charts.

Obviously, the observed ARL0’s would deviate from the
nominal one (370) to various degrees when the distributional
model of population sizes is incorrectly specified. Even with
appropriate models, misspecified parameters in the distribu-
tion function also result in poor IC performance. As pointed
out before, accurate information about future population sizes

can rarely be obtained in many applications. Therefore, con-
trol charts constructed based on the basis that distribution
functions of varying population sizes are exactly known will
result in unacceptable run length distributions as shown in this
table. This clearly indicates the advantage of our EWMAG
chart.

Table 3. The effect of misspecified population sizes on IC ARLs of the EWMAe, EWMAM, and CUSUM charts; θ0 = 1.

Real distribution

Assumed Dist. (I) [C = 8] (I) [C = 1] (II) [C = 1] (II) [C = 7] (III) [nt = 4.5] (III) [nt = 10] (IV) [U(1,4)] (IV) [U(15,18)]

EWMAe
(I) [C = 8] / 461 307 407 384 424 343 437
(II) [C = 1] 450 566 / 502 471 521 411 553
(III) [nt = 4.5] 352 436 295 390 / 408 327 426
(IV) [U(1,4)] 393 492 325 437 416 461 / 486

EWMAM
(I) [C = 8] / 486 294 418 392 441 331 479
(II) [C = 1] 467 648 / 549 503 580 423 615
(III) [nt = 4.5] 347 459 286 398 / 420 319 435
(IV) [U(1,4)] 408 545 329 472 437 495 / 526

CUSUM
(I) [C = 8] / 1032 503 424 402 390 394 607
(II) [C = 1] 282 986 / 256 292 374 300 481
(III) [nt = 4.5] 314 1036 499 423 / 394 390 589
(IV) [U(1,4)] 297 1019 466 419 291 393 / 561
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Table 4. OC ARL comparison of the EWMAG chart and the EWMAe chart under Scenarios (I)–(IV) with τ = 21.

(I) [C = 8] (II) [C = 1] (III) [nt = 4.5] (IV) [U(1,4)]

θ1 EWMAe EWMAG EWMAe EWMAG EWMAe EWMAG EWMAe EWMAG

1.025 249 241 284 285 233 224 266 259
1.050 171 168 220 217 149 146 194 188
1.075 126 124 172 169 104 99.9 146 141
1.100 95.3 94.9 137 133 73.8 72.2 111 107
1.200 44.5 43.8 55.2 52.5 27.7 27.8 48.0 45.9
1.300 27.2 27.1 26.3 25.0 15.2 15.1 26.7 25.9
1.400 19.2 19.1 15.1 14.5 10.0 9.88 17.4 17.1
1.500 14.5 14.5 10.3 9.89 7.31 7.25 12.6 12.6
1.750 8.77 8.81 5.50 5.32 4.19 4.15 7.11 7.18
2.000 6.18 6.18 3.64 3.49 2.83 2.80 4.81 4.90
2.500 3.69 3.72 2.03 1.96 1.59 1.59 2.77 2.94
3.000 2.56 2.58 1.33 1.27 1.02 1.02 1.87 2.06
4.000 1.48 1.48 0.66 0.63 0.47 0.47 1.01 1.23

4.2. OC Performance

To investigate the OC performance, only the EWMAe chart
is used for the comparison because it has an identical form to
the EWMAG chart except for the control limits. We assume
that the population sizes are known exactly here as it is unfair
to compare different procedures in terms of OC ARL when
their IC run length distributions differ significantly. In gen-
eral, OC run length distributions depend on the OC conditions
(i.e., the rate of event occurrence changes from θ0 to θ1 at
time τ ) and the occurrence time τ . Therefore, in the follow-
ing, OC performance is studied under different values of θ1

and occurrence time τ successively.
Assuming τ = 21, Table 4 presents the OC ARLs of the

EWMAG and EWMAe charts with different values of θ1

under Scenarios (I)–(IV). It is easy to see that the two control
charts are comparable in terms of OC performance regardless
of the population scenarios. This demonstrates that the pro-
posed EWMAG chart can deliver the desired IC run length
performance without degradation of its change detection
ability.

Setting θ0 = 1.2, Fig. 2 presents the OC ARLs of the two
charts under Scenarios (I)–(IV) when the occurrence time
τ ranges from 1 to 100. The figure shows that both charts
are sensitive to the occurrence time of the change, especially
when population monotonically increases or decreases. In
general, the EWMAG chart always has smaller OC ARL val-
ues than the EWMAe chart, except when τ is very small under
Scenario (I).

At this point, it is worth mentioning that the main objec-
tive of the proposed dynamic procedure is to make the IC run
length distribution of a control chart attaining the theoretical
geometric distribution rather than to improve the detection
ability of the chart. Therefore, we suggest using the proposed
EWMAG chart due to its desired IC run length performance
and competitive OC performance.

5. AN EXAMPLE IN HEALTHCARE
SURVEILLANCE

In this section, an example of female thyroid cancer in
healthcare surveillance is used to demonstrate the applica-
tion of the proposed EWMAG chart. According to a report
from the National Cancer Institute, there are about 37,000
new cases of thyroid cancer each year in the United States
and females are most likely to have thyroid cancer at a ratio of
3:1. Thyroid cancer may occur in any age group, although it is
most common after age 30, and its aggressiveness increases
significantly in older patients.

The data, provided by the New York State Cancer Registry
through its official website1, include the number of female
thyroid cancer cases and the incidence rate each year in the
New York State. Based on the provided data, the correspond-
ing population size each year can be easily derived. In Fig.
3, (a) and (b) show the time series plots of the counts (in the
units of 100 cases) and the incidence rates per 100 million
population of female thyroid cancer in the New York State,
respectively. It can be observed that the incidence rate was
quite stable before 1982 but exhibited a slight increase after
1983. From 1990 onward, the increase became more signifi-
cant. In Fig. 3c, the female population significantly increased
from 8.95 million in 1976 to 9.88 million in 1995.

Based on the pattern of incidence rate discussed above, the
period from 1976 to 1982 is chosen as the Phase-I reference
sample and accordingly the nominal incidence rate is esti-
mated as θ0 = 0.45. A calibration sample of this size may not
be large enough to precisely determine the IC parameter, but
it suffices to illustrate the use of the method in a real-world
setting. Our aim is to monitor the incidence rate of female

1 http://www.health.ny.gov/statistics/cancer/registry/table2/
tb2thyroidnys.htm.
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Figure 2. OC comparison of the EWMAe and EWMAG charts with different τ .

thyroid cancer from 1983 to 1995 and compare the perfor-
mance of the EWMAG chart and that of the EWMAe chart
in this example.

Before monitoring the incidence rate after 1983, we set
α = 0.0027 or equivalently ARL0 = 370. We fit a logistic
model to the observed population sizes in Phase I using a
nonlinear least square method (year 1975 is treated as time 0
and the population sizes are in the units of 1,000,000) and
obtain nt = 5.856/

[
0.5 + exp {− (t + 86.295) /45.645}]

(Scenario I). Figure 3d shows the real population sizes and
the expected population sizes estimated by the fitted logis-
tic regression model. It indicates that in general, the natural
character of the population growth can be well described by
this logistic model. To show the adverse impacts of erro-
neously estimated population sizes, we further assume that
the population sizes are constant with nt = 9.0 (Scenario III)
or uniformly distributed with nt ∼ U (7.0, 10.0) (Scenario
IV) for comparison.

Under the three different scenarios of population sizes dis-
cussed above, the control limits of the EWMAe chart are
determined to be θ0 + Lσt with L(I) = 2.533, L(III) = 2.547,
and L(IV) = 2.553, respectively. Figure 4 plots the charting
statistics (the solid curves connecting the dots) and the corre-
sponding control limits (the dashed curves) of the EWMAG

chart and the EWMAe charts under different population
assumptions.

A significant increase in incidence rate can be observed
from 1990. Therefore, an alarm should be issued as soon as
possible after 1990. From the plots, it can be seen that the
EWMAG chart exceeds its control limit in 1994 and remains
above the control limit ever since. The EWMAe chart in Sce-
nario I also triggers a signal in the same year. It makes sense
that similar detection results are obtained from the two con-
trol charts as the natural population sizes are appropriately
modeled in Scenario I. Conversely, the EWMAe chart issues
a delayed OC signal in year 1995 in both Scenarios III and
IV, which is caused by the inappropriate distributions of pop-
ulation sizes. The example demonstrates the usefulness of
the EWMAG chart in reality because its detection capability
does not depend on the correct estimation of population sizes,
which is difficult to determine in advance.

6. CONCLUSIONS

Traditional control charts for monitoring Poisson count
data with time-varying sample sizes have a severe
shortcoming—they depend strongly on the knowledge of
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Figure 3. Female thyroid cancer incidence data and the expected population size estimated by the fitted logistic model. (a) Female population,
(b) number of thyroid cancer cases, (c) incidence rate, and (d) estimated population sizes based on the fitted logistic model.

sample sizes before prospective monitoring starts. Such
knowledge is seldom available in real applications. Our
analysis shows that an inappropriate assumption or estima-
tion of sample sizes may lead to poor run length performance
of the traditional control charts. To overcome this shortcom-
ing, we propose the use of probability control limits, which
are determined based on sample sizes observed online, with
the traditional control charts. The online time-varying con-
trol limit acts as a constraint on the conditional probability
that the control chart statistic exceeds the control limit at
present given that not a single alarm has been issued before.
This ensures that a specified false alarm rate is achieved with
identical signal probabilities at each step of Phase II. In this
article, an EWMA-type control chart with the probability
control limits, termed the EWMAG chart, is discussed in
detail. The presented idea can be readily applied to any effec-
tive control charts such as the CUSUM chart. The proposed
EWMAG chart is able to deliver robust and satisfactory IC
and OC run length performance under various situations, as
the simulation studies in this article have shown.

Future research may be extended in the following direc-
tions. First of all, recall that in this article we applied the
proposed EWMAG chart to monitor the occurrence rate of

adverse events assuming that the count of events follows a
Poisson distribution when the sample size is observed online.
Clearly, the EWMAG chart can be extended to more gen-
eral cases in which the observations follow a conditional
distribution given some related parameters/covariates whose
information can be obtained and updated online as well. For
example, when monitoring and predicting shopping quan-
tity in retail data mining, the frequency of purchase and
other demographics play an important role in determining
the baseline purchasing frequency and quantity [16].

In addition, it is well recognized that the performance of
the EWMA-type chart depends on the smoothing parameter
λ, which is simply set to a constant value in this article. One
strand of our ongoing research investigates how to sequen-
tially determine optimal values of λ in the EWMAG chart.
Moreover, the occurrence rates, which correspond to differ-
ent sample sizes, are considered equally informative in the
current study. That is, the EWMAG chart pays the same
amount of attention to a ratio Ri based on a small at-risk
ni as it does to one based on a large ni , even though the
later is more informative in some cases. A control chart with
sample-size-varying smoothing parameters would be more
reasonable [19].
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Figure 4. The EWMAG chart and the EWMAe charts for monitoring the incidence rate of female thyroid cancer.

Finally, more research is required to extend our method to
Phase I analysis, in which detection of outliers or change-
points in a historical dataset and estimation of the baseline
incidence rate is of great interest. It is also known that the
performance of all control charts is affected by the amount
of data in the reference dataset. Thus, the Phase I sample
size required to ensure reasonable performance of the con-
trol charts with estimated parameters should be determined.
Furthermore, future research needs to be directed toward
developing a selfstarting version of the EWMAG chart which
can simultaneously update parameter estimates and check for
OC conditions [23].
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