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A complex model to study the spread of influenza often requires efficient algorithms to simulate disease transmission. This

article studies the internal mechanisms of existing algorithms. We compare existing algorithms to simulate disease

transmission in an effort to identify impact factors and put forth rules for efficient algorithm selection. Specifically, an

algorithm from the infectiousness perspective is recommended when both the transmission probabilities and the fraction of

infectious individuals are small, or when the transmission probabilities are large but the fraction is either sufficiently small or

sufficiently large. In contrast, an algorithm from the susceptible perspective should be adopted in the case of small transmission

probabilities but a large fraction of infectious individuals, or large transmission probabilities and a moderate fraction. This

investigation not only helps to guide a more-efficient simulation study of disease transmission in practice but also serves as a

prerequisite for the development of more-advanced simulation models.
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1. Introduction

The emergence of successive global influenza pandemics has

attracted increasing attention from society and public heath

officials. Since the end of 2003, the spread of the highly pathogenic

avian influenza H5N1 through wild and domestic poultry in

Southeast Asia has been regarded as one of the most-serious

human pandemic outbreaks (Abbott and Pearson, 2004; Ferguson

et al, 2005; Peiris et al, 2007) In April 2009, a new influenza A

virus, H1N1, was announced by the World Health Organization

(WHO); and on June 11, 2009, WHO declared that an influenza

pandemic had emerged in the world (Andradóttir et al, 2011).

Careful study of influenza spread is needed to inform public

policy with respect to the control of such pandemics and to

evaluate pandemic preparedness plans. Due to the complex

modelling issues posed by pandemics, simulation techniques

have gained widespread use in this field. Longini et al (2004)

compared the effectiveness of various intervention strategies

based on a discrete-time, stochastic simulation model of

influenza spread within a structured population. Longini’s

stochastic simulation model was proposed by Elveback et al

(1976) and was also applied by Halloran et al (2002) for the

study of smallpox. Subsequently, various investigations have

been conducted based on the original or modified simulation

models to analyze the effectiveness of social distancing

interventions (Kelso et al, 2009) and employee vaccination

(Lee et al, 2010), and to evaluate intervention strategies and

quantify the potential costs and benefits of different options

(Ferguson et al, 2001; Keeling et al, 2001; Riley et al, 2003).

In most of these simulation models, the changing status of

any generic person in an outbreak of a disease follows the well-

known ‘‘susceptible - exposed - infectious - recovered/

removed’’ (SEIR) paradigm (Anderson and May, 1991). These

simulation models typically use a common algorithm to depict

disease transmission between individuals. Such an algorithm

generally works in the following way. It is assumed that each

person is either fully infectious or fully susceptible, and

undergoes daily contacts with others in the household, neigh-

borhood, community, and school/workplace. These four loca-

tions where disease transmission may occur are called ‘‘contact

groups’’ (Longini et al, 2005). After a susceptible individual has

gone through all potential contacts, his/her status of being

infectious or not is determined based on a number of Bernoulli

trials. The capacity of simulation models to handle detailed

population information is essentially limited by the speed of the

algorithm to simulate the disease transmission.

To develop more-accurate, efficient, and powerful simula-

tion models of influenza spread, the inherent mechanism

underlying available algorithms must be thoroughly examined.

However, to the best of our knowledge, no studies have ever

been conducted on this important issue. In this article, we

analyze and compare existing algorithms to understand their

characteristics and identify rough rules for selecting the most-
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efficient one in applications. Specifically, we focus on an

individual day and investigate the efficiency of algorithms in

determining who has been infected by the end of that day.

Although we are concerned about transitions from the

susceptible state to the exposed state, we are primarily

interested in whether or not a person is infectious. In any

case, the numbers of infectious and susceptible individuals are

given at the beginning of the day, and these are updated as the

simulation progresses from day to day. We want to determine

which algorithm carries out these updates the most quickly.

The remainder of this article is organized as follows. In

Section 2, we review some existing update algorithms and

determine factors that influence their efficiency. A compre-

hensive understanding of such existing algorithms is a

prerequisite for developing new and more-efficient algorithms.

Based on the identified factors, in Section 3, we conduct

simulation experiments to verify the intuition derived from

Section 2, and then presents the basic guidelines for real

applications and further research. Finally, several remarks

draw the article to its conclusion in Section 4.

2. Algorithms to simulate disease transmission

In this section, we present several individual-level algo-

rithms to simulate influenza spread. For ease of exposition,

useful notation is given in Table 1. We consider g contact

groups for each person in the population. The values of the

infection probabilities puvk’s are assumed to be given and are

usually updated from day to day. Each person of interest,

either infectious or susceptible, is assumed to have daily

contact with others in his contact groups (Andradóttir et al,

2011; Longini et al, 2004, 2005). Each susceptible individual

has the chance of contacting infectious individuals in multiple

groups and/or at multiple times. The possibility of multiple

contacts is a standard assumption in the influenza spread

literature and is critical when constructing an algorithm to

simulate transmission. In the following, we review some

existing algorithms from two perspectives: (i) the infectious-

ness perspective in which the algorithm loops through all of

the infectious agents each day to see how many susceptibles

they will infect, and (ii) the susceptible perspective in which

the algorithm loops through all of the susceptibles to see who

gets infected.

2.1. Algorithm from the infectiousness perspective

From the infectiousness perspective, a transmission algorithm

determines how many susceptible individuals will be infected

by each specific infectious individual u. We discuss the

algorithm proposed by Tsai et al (2010) in this section and

refer to it as the ‘‘Tsai + Sieve’’ algorithm. Assume that for a

specific infectious person u, a susceptible person v exists in

both the groups Gi
u1 and Gi

u2 but in no other groups. The

probability of v being infected by this u in Gi
u1 is puv1 and that

in Gi
u2 is puv2. Then, considering the multiple contacts, the

probability that v is not infected in the Tsai + Sieve algorithm

is quv ¼ ð1� puv1Þð1� puv2Þ.
Now suppose that g contact groups are associated with each

individual. When infectious individual u is in contact groupGi
uk

(k ¼ 1; . . .; g), he will fully contact all nsuk susceptible persons.

Accordingly, there is an associated vector recording the

transmission probabilities for the nsuk susceptibles,

ðpu11; . . .; puns
uk
1Þ. At this point, the sieve algorithm (Algorithm

1) is implemented in Tsai + Sieve. LetPuk ¼ maxv¼1;...;ns
uk
fpuvkg,

where k ¼ 1; 2; . . .; g.

The value of R depends on nsuk and Puk; and the advantage

of applying the sieve algorithm is highlighted when nsuk is

large and Puk is small, in which case one must only conduct

a few Bernoulli trials. The sieve algorithm is similar to the

thinning algorithm for nonhomogeneous Poisson processes

(Lewis and Gerald, 1979), becoming inefficient when Puk is

significantly larger than the second-largest transmission

probability.

Table 1 Notations

Symbol Meaning

Ni Total number of infectious persons
Ns Total number of susceptible persons
g Number of contact groups
u Infectious person (u ¼ 1; 2; . . .;Ni)
v Susceptible person (v ¼ 1; 2; . . .;Ns)
k Contact group (k ¼ 1; 2; . . .; g)
Gi

uk
kth contact group of infectious person u

Gs
vk kth contact group of susceptible person v

nivk Number of infectious persons in Gs
vk

nsuk Number of susceptible persons in Gi
uk

puvk Probability of v being infected by u in group k
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Note that for purposes of efficiency, the status of any

infected susceptible individuals should be updated immedi-

ately; and hence the size of the susceptible population is a

dynamically decreasing variable. More specifically, the first

infectious individual u in Gi
u1 is associated with the susceptible

population of size nsu1. After removing the susceptible

individuals infected by the first u, a second infectious

individual in that same group would encounter a smaller

susceptible population. In other words, we remove newly

infected individuals in order to avoid the overhead of Bernoulli

trials for individuals who are already infected. In any case, the

gradually decreasing size of the susceptible population con-

tributes to the efficiency of the algorithm. We now summarize

the Tsai + Sieve algorithm in Algorithm 2. Let P ¼
maxu¼1;���;Ni ;k¼1;���;gfPukg. The computational complexity of

the Tsai + Sieve algorithm is OðNiNsPÞ for a generic time

period (e.g., one day).

2.2. Algorithms from the susceptible perspective

From the susceptible perspective, we investigate whether

susceptible individual v would be infected after he has come

into contact with all of the infectious individuals in the

associated contact groups. A well-known algorithm from this

viewpoint was introduced by Longini et al (2004, (2005), and

hence we refer to it as the ‘‘Longini algorithm’’.

Again, we assume that there are g contact groups. In group

Gs
vk (k ¼ 1; . . .; g), the probability of v being infected by any of

the nivk infected people in that group is Pvk ¼ 1�
Qni

vk

u¼1

ð1� puvkÞ. Then, the probability of v being infected after going
through all of the contact groups that day is Pv ¼
1�

Qg
k¼1

Qni
vk

u¼1ð1� puvkÞ.
Assume that at the beginning of a particular day there are Ns

susceptible individuals. For the entire susceptible population,

we have an associated set of that day’s infection probabilities

fP1; . . .;PNs
g. To determine how many of the susceptibles are

infected at the end of that day, Ns corresponding Bernoulli

trials are performed. The computational complexity of the

Longini algorithm is OðNiNsÞ for a generic day.

Ling et al (2015) combine the Longini algorithm with the

sieve algorithm for what might be a more-efficient simulation

from the susceptible perspective. We refer to such an

algorithm as the ‘‘Longini + Sieve algorithm’’, described in

Algorithm 4. The parameter PA ¼ maxvfPvg.
The only difference between Algorithms 3 and 4 is that the

latter tries to reduce the number of Bernoulli trials from Ns to

some smaller value through the sieve algorithm. The efficiency

of Algorithm 4 is determined by how small the value of PA can

be. If there is a susceptible individual v who contacts a great

many u’s, then Algorithm 4 may lose its advantage, as the

corresponding Pv may be very close to 1. The computational

complexity of the Longini + Sieve algorithm is OðNiNsPAÞ for
a generic day.

2.3. Analysis of algorithm efficiency

In this section we compare Algorithms 2, 3, and 4 to (i)

identify the factors influencing algorithm efficiency and (ii)

summarize rough rules for selecting the most-efficient

X. Shen et al—Comparison of algorithms



algorithm to simulate disease transmission. The efficiency is

compared for a one-day horizon, and the sizes of the infectious

and susceptible populations are fixed for all of the candidate

algorithms in order to carry out apples-to-apples comparisons.

Let the entire population size be M, among which the fraction

of the infectious population is b, i.e., Ni ¼ bM and

Ns ¼ ð1� bÞM. The salient characteristics of the three algo-

rithms are given in Table 2. Note that the symbol ‘‘� ’’ in the

table indicates that the presented value is the upper bound of

the number of Bernoulli trials in Algorithm 2.

In Table 2, the efficiency of the Tsai + Sieve algorithm

depends on the values of b and the puvk’s for a givenM. For that

algorithm, the outermost for loop (‘‘for each infectious individ-

ual u’’) is executed bM times; so when b is small, this number is

relatively small. Also, the number of Bernoulli trials is reduced

by the sieve algorithm, and that reduction is especially

pronounced when all of the puvk’s are small. With large puvk’s,

although the sieve algorithm component becomes inefficient,

the Tsai + Sieve algorithm may still be efficient, as it benefits

from the reduction of the susceptible population as sampling

progresses. When b is large, the algorithm loses its efficiency in

the outermost for loop but gains some benefits from the small

susceptible population. Again, small puvk’s endow the sieve

algorithmwith great effectiveness, while large puvk’s eventually

lead to a significant reduction of the susceptible population. As a

result, we deduce that the Tsai + Sieve algorithm is efficient

when almost all of the puvk’s are small or large.

Considering the algorithms incorporating the susceptible

perspective, the efficiencies of Algorithms 3 (Longini) and 4

(Longini + Sieve) are affected by the values of b and the

puvk’s. A small b brings a large number of executions of the for

loops in the two algorithms but requires less effort for the

calculation of Pv; and a large b has the opposite effect.

3. Simulation experiments and results

In this section, we evaluate our intuition about the algorithms

through simulation studies. In the following experiments,

algorithm efficiency is determined by the computational time

(CPU time) in seconds, and the factors include M, b, and the

puvk’s. In addition, only one contact group is considered, i.e.,

g ¼ 1.

Two scenarios are considered for the transmission proba-

bility puv1. Scenario I assumes that the puv1 of each contact

between an infective u and a susceptible v independently

follows a uniform distribution, U ðdL; dUÞ. Scenario II

concerns the case in which only a small number of susceptible

individuals have large transmission probabilities. Therefore, in

Scenario II, puv1 ¼ 1� e�kY , where Y follows a standard

exponential distribution, and the expectation Eðpuv1Þ ¼ k=
ð1þ kÞ. Figure 1 plots the histograms of the generated

transmission probabilities (10000 for each histogram) for

different values of the parameter k ¼ f0:0001; 0:001;
0:01; 0:1g from Scenario II. Note that the scales of the four

histograms in Figure 1 are different.

3.1. Algorithm efficiency w.r.t. fraction b

To investigate the relationship between algorithm efficiency

and the fraction of infectious individuals, we set M ¼ 10000,

dL ¼ 0, and dU ¼ f0:00005; 0:0005; 0:005; 0:05g in Scenario

I, and k ¼ f0:0001; 0:001; 0:01; 0:1g in Scenario II. Under

each scenario, we gradually increase the fraction b and

calculate the corresponding computational time. The program

is written in Fortran and the code can be provided on request.

Table 3 presents the average CPU times and attack rates (the

number of susceptible people infected with the disease divided

by the total number of susceptibles) after repeating the

simulation trial 500 times. The expectation of the transmission

probabilities, Eðpuv1Þ, is shown below the assignment of dU or

k. The symbols ‘‘T + S’’, ‘‘L’’, and ‘‘L + S’’ represent the Tsai

+ Sieve, Longini, and Longini + Sieve algorithms, respec-

tively. The bold font indicates the smallest CPU time among

all of the algorithms for a given parameter setting.

The CPU time of the Tsai + Sieve algorithm exhibits an

increasing and then decreasing pattern as b increases in

Table 3. The decreasing pattern appears after b ¼ 0:5 when dU
or k are small. However, when the transmission probabilities

are large, the decrease presents at a smaller b. This indicates
that in addition to the role of b, reducing the size of the

remaining susceptible population in this algorithm plays an

important role w.r.t. CPU time. Specifically, a larger dU or k
brings a sharper reduction of the susceptible population in the

outermost for loop and enables the decreasing pattern to

present at a smaller b. The sieve algorithm makes a significant

contribution to this algorithm because each infectious indi-

vidual can interact with potentially many susceptibles and

accordingly initiate a large number of Bernoulli trials; and

hence the reduction of such trials improves the efficiency of

the Tsai + Sieve algorithm.

Table 2 Summary of the Tsai + Sieve, Longini, and Longini + Sieve algorithms

Algorithm 2. Tsai + Sieve 3. Longini 4. Longini + Sieve

Perspective Infectiousness Susceptible Susceptible
Multiple contacts Yes Yes Yes
Time-consuming steps Determine Puk Sieve algorithm Calculate Pv Bernoulli trials Calculate Pv;PA Sieve algorithm
#Bernoulli trials �

P
k Rk, where Rk � Bin ðnsuk;PukÞ ð1� bÞM R� Bin ðð1� bÞM;PAÞ

Factors puvk, M, b

Journal of Simulation



For the Longini algorithm and the Longini + Sieve

algorithm, the hill-shaped patterns of the CPU times still

present as b increases. Table 3 shows that the CPU times

usually achieve their maxima when b ¼ 0:5. This can be

explained as follows. Let tm and tB denote the times needed to

perform one multiplication and one Bernoulli trial, respec-

tively. Then the time cost of the Longini algorithm should be

(very roughly) about bð1� bÞM2tm þ ð1� bÞMtB. Similarly,

the time for the Longini + Sieve algorithm is approximately

bð1� bÞM2tm þ RtB, where R� Bin ðð1� bÞM;PAÞ. Both

functions are concave in b and their maxima ought to be

achieved for values of b� 0:5, which is in line with the results

from the simulation study.

Note that in the Longini + Sieve algorithm, the expected

time cost of Bernoulli trials is E½RtB� ¼ ð1� bÞMPAtB �
ð1� bÞMtB, so the expected time cost of Bernoulli trials in the

Longini + Sieve algorithm is a bit smaller than that in the

Longini algorithm. This indicates that the sieve algorithm can

save at least a few Bernoulli trials in the calculations.

However, applying the sieve algorithm may also incur some

costs, e.g., the set-up cost of generating the upper bound R and

randomly selecting R candidates, that may overwhelm the

savings in Bernoulli trials. This phenomenon is borne out in

Table 3. For all cases considered in that table, Longini + Sieve

is less (more) efficient than Longini for all b� 0:01 (b\0:01).

The intuition is that a large b indicates a large number of

infectious individuals and thus leads to large values of PA; in

that case, the sieve algorithm’s reduction in the number of

Bernoulli trials becomes less significant.

Comparing the candidates together, we can verify from

Table 3 that these algorithms are equivalent in terms of their

ability to predict consistent attack rates. This means that any of

the algorithms can be reliably used to depict the degree of

influenza spread. With regard to efficiency comparison, we

find that only the Longini and Tsai + Sieve algorithms are

most efficient under typical conditions. In particular, in the

case of small transmission probabilities, the Tsai + Sieve

algorithm is the winner when only a small proportion of the

population is infectious. As b increases in Table 3, the Longini

algorithm tends to be the most efficient. In the case of large

transmission probabilities, the Tsai + Sieve algorithm is the

most efficient when b is either small or large, while the

Longini algorithm generally outperforms the other two when b
is moderate. A more-detailed investigation of the relationship

between efficiency and transmission probabilities is the focus

of the next section.

3.2. Algorithm efficiency w.r.t. transmission probabilities

We now conduct a simulation experiment to investigate the

relationship between algorithm efficiency and transmission

probabilities (or equivalently, the values of dU and k). We set

(a) (b)

(c) (d)

Figure 1 Histograms of the generated transmission probabilities in Scenario II with different values of k. a k ¼ 0:0001, b k ¼ 0:001, c
k ¼ 0:01, and d k ¼ 0:1.

X. Shen et al—Comparison of algorithms
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the parameters as in Table 4. The attack rate is no longer

considered, as it was well-discussed in Section 3.1 .

Table 5 gives the CPU times of the three algorithms based

on 10000 simulation replications. In general, the Tsai +

Sieve algorithm is more sensitive to the transmission

probabilities for any given b. Larger transmission probabil-

ities result in a significant decrease in the susceptible

population after each run of the outermost for loop of the

algorithm. However, we mention that the advantage of the

Tsai + Sieve algorithm will tend to ease up in the case of

large transmission probabilities due to the weakening effect of

the sieve algorithm.

The Longini model is not sensitive to the transmission

probabilities at all, which is guaranteed by the nature of this

algorithm. More concretely, the efficiency of the Longini

algorithm is only related to (i) how many susceptible

individuals are in the population and (ii) how many infectious

individuals will be contacted for each susceptible person.

Regarding the Longini + Sieve algorithm, although it is also

robust to the transmission probabilities in Table 5, it should

theoretically tend to run slower w.r.t. larger transmission

probabilities under a given b—a limitation of the sieve

algorithm. However, in real applications, the transmission

probabilities of different contacts are usually very small (see

Longini et al, 2004, 2005). Therefore, we only investigate the

algorithm efficiency w.r.t. small transmission probabilities,

and both the Longini and Longini + Sieve algorithms are

robust to the small probabilities.

Next, we compare the three algorithms from the two

perspectives together. For clarity, we divide the analysis into

several cases according to the value of b. Note that the analysis
is based on a population size of M ¼ 10000.

Case 1 (b is sufficiently small) With few infectious

individuals, the Tsai + Sieve algorithm is the most efficient

for most transmission probabilities. However, it is difficult to

define ‘‘sufficiently small’’, as the value may be influenced

by the various experimental factors, In Scenario I, a

sufficiently small b seems to be � 0:01, while in Scenario

II a sufficiently small value might be � 0:005, though in the

b ¼ 0:005 case, the Longini algorithm wins for large k.

Case 2 (b moderately small) For moderately small b ¼ 0:01,

Tsai + Sieve wins in Scenario I for all dU , and Longini

generally wins in Scenario II for all k.

Case 3 (b moderately large) The Longini algorithm becomes

the best algorithm in the efficiency comparison as b increases

moderately; see, for example, the cases of b ¼ 0:01 in

Scenario II or b ¼ 0:05 for either scenario.

Case 4 (b sufficiently large) With a large number of

infectious individuals, the Longini algorithm is the most

efficient when the transmission probabilities are small. When

the transmission probabilities are large, the Tsai + Sieve

algorithm becomes the best among the three.

Table 4 Parameters of the simulation experiment in
Section. 3.2

Symbol Value

b f0:005; 0:01; 0:05; 0:5g
dU f0:00002; 0:00004; 0:0002; 0:0004; 0:002; 0:004; 0:2; 0:4g
k f0:00002; 0:00004; 0:0002; 0:0004; 0:002; 0:004; 0:2; 0:4g
dL 0
M 10000
g 1

Table 5 Algorithm computational time in seconds w.r.t. dU in Scenario I and k in Scenario II for various b

b ¼ 0:005 b ¼ 0:01 b ¼ 0:05 b ¼ 0:5

T + S L L + S T + S L L + S T + S L L + S T + S L L + S

dU
0.00002 0.004 0.006 0.006 0.009 0.013 0.011 0.044 0.026 0.044 0.239 0.124 0.214
0.00004 0.005 0.006 0.006 0.011 0.014 0.011 0.044 0.024 0.044 0.232 0.125 0.216
0.00020 0.005 0.006 0.006 0.009 0.014 0.012 0.045 0.025 0.048 0.218 0.122 0.214
0.00040 0.005 0.006 0.007 0.009 0.013 0.012 0.045 0.024 0.047 0.202 0.126 0.211
0.00200 0.005 0.008 0.007 0.010 0.013 0.012 0.042 0.027 0.044 0.156 0.122 0.211
0.00400 0.005 0.007 0.008 0.009 0.013 0.011 0.040 0.025 0.046 0.131 0.124 0.215
0.02000 0.005 0.006 0.008 0.010 0.014 0.012 0.034 0.026 0.047 0.029 0.121 0.215
0.04000 0.005 0.007 0.008 0.009 0.013 0.011 0.031 0.026 0.044 0.016 0.121 0.213

k
0.00002 0.005 0.008 0.006 0.010 0.009 0.011 0.045 0.028 0.040 0.227 0.124 0.207
0.00004 0.005 0.007 0.007 0.009 0.009 0.012 0.045 0.028 0.042 0.224 0.117 0.198
0.00020 0.005 0.008 0.007 0.009 0.009 0.011 0.039 0.029 0.041 0.198 0.119 0.208
0.00040 0.006 0.007 0.007 0.010 0.010 0.011 0.042 0.027 0.047 0.174 0.118 0.206
0.00200 0.004 0.007 0.007 0.012 0.010 0.011 0.044 0.029 0.040 0.132 0.122 0.206
0 .00400 0.006 0.007 0.008 0.012 0.010 0.011 0.041 0.027 0.041 0.068 0.115 0.206
0.02000 0.011 0.008 0.008 0.016 0.010 0.012 0.035 0.027 0.043 0.020 0.118 0.208
0.04000 0.012 0.008 0.008 0.016 0.009 0.012 0.023 0.025 0.042 0.011 0.122 0.209

Bold values are used to highlight the best performance among three algorithms.
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3.3. Relative efficiency w.r.t. the population size

Up to this point, all of the simulation experiments have been

based on a constant population size M. To ensure the relative

efficiencies of the algorithms shown in the previous experi-

ments are not affected significantly by the values of M, we

construct the following simulation experiment for validation.

Three different settings of the fraction b and the transmission

probabilities are chosen under each scenario: ðb; dUÞ ¼
fð0:0005; 0:0005Þ; ð0:1; 0:05Þ; ð0:1; 0:0005Þg for Scenario I

and ðb; kÞ ¼ fð0:0005; 0:0001Þ; ð0:05; 0:1Þ; ð0:02; 0:001Þg for

Scenario II. Let the population size change from 2000 to

20000 in steps of 2000. Table 6 records the CPU times based

on 2000 simulation replications and shows how the algorithm

efficiency changes with the value of M under the two

scenarios.

Table 6 reveals that the Tsai + Sieve algorithm has the

best efficiency under the first two settings for Scenarios I

and II, while the Longini algorithm has the advantage in the

third. When a small population is of interest, the three

algorithms are almost the same in terms of efficiency. With

an increase in the population size, the advantages of the Tsai

+ Sieve and Longini algorithms become increasingly signif-

icant. Nevertheless, the relative efficiency ranking of the

three algorithms stays the same despite the value of M.

Hence, our conclusions based on the simulation experiments

with M ¼ 10000 as discussed in Sects. 3.1 and 3.2 seem to be

credible.

3.4. General guidelines for application

Through the foregoing simulation experiments, we conclude that

the efficiency of any algorithm depends on both the infectious

fraction b and the transmission probabilities represented by dU
and k in Scenarios I and II, respectively. When the transmission

probabilities are smaller than, say 10�3, the Tsai + Sieve

algorithm should be used when b is small (e.g., b� 0:01), while

the Longini algorithm is recommended when b is large (e.g.,

b� 0:05). However, when the transmission probabilities are

large overall (e.g., larger than 0.001), the Tsai + Sieve algorithm

should be selected whenever b is sufficiently small (termed bL)
or sufficiently large (termed bU), and the Longini algorithm

should be used when b is a moderate value within the interval

ðbL; bUÞ. How we define ‘‘sufficiently small/large’’ depends

critically on the size of the transmission probabilities. In

general, larger transmission probabilities correspond to smaller

bL and bU and a smaller range of the interval ðbU � bLÞ.
In real applications, the transmission probabilities are

usually small and an efficient algorithm for simulation of

disease transmission should be selected based on the value of

b. When we are interested in the early stages of a disease, the

Tsai + Sieve algorithm is suggested, as a very small proportion

of the population is usually infectious at that point. However,

note that the number of infectious individuals will increase as

the influenza spreads, and thus the Tsai + Sieve algorithm may

not always be the most-efficient choice. For dU ¼ 0:00005,

k ¼ 0:00005 and b ¼ f10�4; 10�3:5; . . .; 10�0:5g, Figure 2

Table 6 CPU times in seconds of the algorithms w.r.t. population size M under Scenarios I and II

M ðb; dUÞ ¼ ð0:0005; 0:0005Þ ðb; dUÞ ¼ ð0:1; 0:05Þ ðb; dUÞ ¼ ð0:1; 0:0005Þ

T + S L L + S T + S L L + S T + S L L + S

2000 0.000 0.001 0.001 0.002 0.003 0.004 0.004 0.003 0.003
4000 0.000 0.002 0.001 0.008 0.008 0.014 0.014 0.010 0.013
6000 0.000 0.003 0.002 0.013 0.018 0.027 0.031 0.018 0.030
8000 0.000 0.004 0.003 0.018 0.030 0.049 0.053 0.032 0.051
10 000 0.001 0.004 0.003 0.021 0.045 0.077 0.074 0.048 0.075
12 000 0.001 0.006 0.004 0.027 0.063 0.110 0.116 0.069 0.112
14 000 0.001 0.006 0.004 0.032 0.087 0.151 0.151 0.090 0.153
16 000 0.001 0.008 0.005 0.037 0.116 0.197 0.196 0.116 0.194
18 000 0.002 0.009 0.006 0.042 0.146 0.242 0.247 0.141 0.240
20 000 0.002 0.009 0.007 0.046 0.172 0.305 0.300 0.189 0.301

M ðb; kÞ ¼ ð0:0005; 0:0001Þ ðb; kÞ ¼ ð0:05; 0:1Þ ðb; kÞ ¼ ð0:02; 0:001Þ

T + S L L + S T + S L L + S T + S L L + S

2000 0.000 0.001 0.001 0.002 0.002 0.002 0.001 0.001 0.001
4000 0.000 0.002 0.001 0.005 0.005 0.007 0.003 0.003 0.003
6000 0.000 0.002 0.002 0.007 0.009 0.015 0.007 0.006 0.007
8000 0.000 0.004 0.002 0.010 0.016 0.028 0.012 0.010 0.013
10 000 0.001 0.005 0.003 0.013 0.027 0.042 0.019 0.014 0.018
12 000 0.001 0.005 0.003 0.015 0.035 0.059 0.027 0.020 0.026
14 000 0.001 0.007 0.004 0.019 0.046 0.080 0.036 0.025 0.036
16 000 0.001 0.008 0.005 0.021 0.059 0.102 0.047 0.031 0.044
18 000 0.002 0.009 0.006 0.024 0.076 0.131 0.059 0.039 0.057
20 000 0.002 0.009 0.007 0.027 0.092 0.161 0.072 0.046 0.069

Bold values are used to highlight the best performance among three algorithms.
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displays the relative efficiency of the algorithms w.r.t. the

increasing fraction of infectious individuals (Scenario I on the

left and Scenario II on the right). With an increase in the

fraction b, the Tsai + Sieve algorithm should be replaced by

the Longini algorithm when b is larger than a certain value.

4. Conclusions

In this article, we have emphasized the importance of

algorithm efficiency in simulating a model of disease trans-

mission for the eventual purpose of studying strategies for the

timely control of influenza spread. To develop more-efficient

algorithms and more-advanced simulation models for disease

transmission, it is important to understand the characteristics

of the existing algorithms and identify their advantages/

disadvantages. To the best of our knowledge, no previous

studies have shed light on such issues.

To guide real applications in this area, we have reviewed

three alternative transmission algorithms, i.e., the Tsai + Sieve,

Longini, and Longini + Sieve algorithms, from the viewpoints

of either infectious or susceptible individuals, and we have

distinguished some rough rules for selecting the most-efficient

algorithm among the three candidates under different condi-

tions. In addition, we have indicated the basic ideas for

applying the algorithms in actual applications.

In terms of future research, one might well develop a new

algorithm based on the results of this study. We have learned

that the most time-consuming step in the Longini algorithm is

the calculation of Pv for each susceptible individual, and the

analogous bottleneck in the Tsai + Sieve algorithm is the

tremendous number of Bernoulli trials. Therefore, when trying

to develop a more-efficient algorithm, one may think about

how to avoid these time-consuming steps. Considering the

multiple contact groups for each individual in real applica-

tions, we could even optimize the existing simulation strate-

gies according to the advantages and disadvantages of the

different algorithms discussed in this article. In the following,

we list some of the more-interesting findings and explain

meaningful directions for further studies.

In applications, both (i) the fraction of the infectious

individuals among the entire population and (ii) the overall

transmission probabilities can be used as metrics for selecting

algorithms in terms of their efficiency. The transmission

probabilities are usually very small and in such cases no

algorithm is associated with the absolute advantage in all

scenarios. Therefore, we should select the most-efficient

algorithm based on the value of b. In general, the Tsai +

Sieve algorithm should be applied when only a few individuals

are infectious. When faced with many infectious individuals,

the Longini algorithm is suggested for a more-efficient

simulation study.

In reality, b is a random variable instead of a constant. For

example, on day 1 of an outbreak, only several infectious

individuals exist in the population and thus we choose the Tsai

+ Sieve algorithm for the simulation. As the disease spreads,

say at day 10, b may have increased to a large value, e.g.,

b ¼ 0:2. At that point, the Tsai + Sieve algorithm loses its

advantage and should be replaced by the Longini algorithm.

Therefore, we believe that it is necessary to develop a switch

strategy for the transmission algorithms based on such real-life

situations. In future research, we will study the problem of

when to switch the disease transmission algorithm in the

simulation model.

In addition to the switch strategy, the following topics merit

consideration. First, given the multiple contact groups asso-

ciated with each person, a more-complicated investigation of

the algorithms may be conducted to identify the additional

advantages/shortages of different algorithms in such cases.

Second, considering the time-consuming step in the Longini

algorithm, an improved procedure of determining the proba-

bility of being infected for each susceptible individual would

be a significant step towards a more-efficient transmission

algorithm. Moreover, note that we only consider one contact

group for each individual in the current study, and the real

world is much more complicated than what we have presented

Figure 2 Relative efficiency of the algorithms w.r.t. the increasing fraction b of infectious individuals. The left figure depicts the case of
Scenario I and the right figure is for Scenario II.
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here. An agent based simulation model may be built by

considering the advantages/disadvantages of the algorithms

incorporating multiple contact groups for each individual. It

would also be interesting to study those models in the context

of metropolitan cities with the scale of 1 to 10 million

population.
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