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To monitor covariance matrices, most of the existing control charts are based on some omnibus test and thus usually are not
powerful when one is interested in detecting shifts that occur in a small number of elements of the covariance matrix. A new
multivariate exponentially weighted moving average control chart is developed for the monitor of the covariance matrices by
integrating the classical L2-norm-based test with a maximum-norm-based test. Numerical studies show that the new control
chart affords more balanced performance under various shift directions than the existing ones and is thus an effective tool
for multivariate SPC applications. The implementation of the proposed control chart is demonstrated with an example from
the health care industry.

Keywords: change in covariance matrix; exponentially weighted moving average; sparsity

1. Introduction

In modern manufacturing and service industries, it is common to simultaneously monitor several quality characteristics of a
process (Alfaro et al. 2009; Du, Lv, and Xi 2012). Recently, a great deal of research interest has been directed at multivariate
statistical process control (MSPC) and the techniques thus developed have been popular in areas such as signal processing,
network security, health care surveillance, image processing, genetics, finance and economics. Woodall and Montgomery
(1999) and Stoumbos et al. (2000) pointed out that the multivariate control charts are one of the most rapidly developing areas
of SPC and suggested that basic and applied research should be conducted on methods for monitoring multiple parameters in
a process. An extensive overview is given by Bersimis, Psarakis, and Panaretos (2007) for the existing multivariate control
charts.

In addition to the mean vector, it is also important to monitor changes in the covariance matrix in many industrial settings.
Whether a process is in-control (IC) or not could very well depend on the dispersion and interaction of multiple variables,
represented by the elements in the covariance matrix. In the health care industry, for example, the foetal state may be
determined using a technique called cardiotocography which measures multiple features such as the number of accelerations
per second, the number of foetal movements per second and so on. Any significant deviation of the mean vector or the
covariance matrix of those features from the normal state indicates that the foetus may have a health problem. Detecting the
deviations as soon as they occur facilitates timely and effective treatments. In a high-dimensional case, the covariance matrix
would contain more elements of interest and thus deviations occur with a higher probability. In other words, monitoring the
covariance matrix is even more important in high-dimensional cases.

In this study, we focus on the on-line monitoring of the process covariance matrix. We assume that an IC reference
sample of size m0 has been collected in the Phase I analysis, and it can be used for estimating certain IC parameters. To
be more specific, we assume that there are m0 independent and identically distributed historical reference observations,
x−m0+1, . . . , x0 ∈ R

p, for some integer, p ≥ 1, and the i th future observation, xi , is collected over time from the following
multivariate change-point model

xi ∼
{

Np(μ,�IC), if i = −m0 + 1, . . . , 0, 1, . . . , τ ;
Np(μ,�OC), if i = τ + 1, . . . ,

(1)

where τ is the unknown change point and �IC �= �OC are, respectively, the IC and out-of-control (OC) covariance matrices.
In this study, as our focus is on monitoring the covariance matrix, it is assumed that μ would not change, which is consistent
with the existing literature. As a Phase II SPC convention, it is usually assumed that the IC parameters are known or,
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equivalently, that they are estimated from a sufficiently large reference data-set. Without loss of generality, (μ,�IC) can be
simplified to (0, Ip×p).

Some multivariate control charts in this sphere have been proposed and discussed based on the multivariate exponentially
weighted moving covariance matrix (MEWMC) recently. See in Yeh, Huwang, and Wu (2005), Yeh, Lin, and McGrath
(2006) and Huwang, Yeh, and Wu (2007). More specifically, let a subgroup of size n at time t , xt,1, xt,2, . . . , xt,n , be given,
where n is an integer great than or equal to 1. The MEWMC is defined as that, for t = 1, 2, . . .,

�t = (1 − λ)�t−1 + λSt , (2)

where

St = n−1
n∑

i=1

xt,i xT
t,i , (3)

and �0 = Ip×p. Based on the MEWMC, Hawkins and Maboudou-Tchao (2008) proposed a control chart, termed “HMT”
chart here, and chosen its charting statistic to be the likelihood ratio statistic (Alt 1984),

TtHMT = tr(�t ) − log |�t | − p. (4)

It is natural to define the charting statistic as a likelihood ratio. Similar consideration can be found in Yeh, Huwang, and Wu
(2004).

The control charts mentioned above with omnibus charting statistics like (4) are powerful for detecting shifts that occur in
the majority elements of �. In practice, however, shifts often occur in only a few of the variance and/or covariance elements
(Yeh, Li, and Wang 2012). This is the so-called “sparsity" characteristic. A fault is more likely to be caused by a hidden
source, which is reflected in unknown changes characterised by this sparsity (see Zou and Qiu 2009). In such cases, more
powerful control charts are needed and two control charts have been thus developed via penalised likelihood estimation.
Li, Wang, and Yeh (2013) developed a penalized likelihood ratio (PLR) control chart under the premise that the OC covariance
matrix �OC remains sparse in the sense that only a few diagonal elements are not equal to 1 and a few off-diagonal elements
are not equal to 0 (assuming �IC = Ip×p). Let the subgroup size n be larger than or equal to the dimensionality p and the
observation at time t be xt , they defined a precision matrix �ρ = �−1 as the solution to the following penalised likelihood
function modified from that developed by Rothman et al. (2008):

�ρ = arg min�>0{tr(�St ) − ln |�| + ρ‖�‖1}, (5)

where ‖A‖1 = ∑p
j=1

∑p
i=1 |ai j | for A = [ai j ]p×p and ρ is a data-dependent tuning parameter which can be tuned to achieve

different levels of sparsity of the �. Then the charting statistic of the PLR chart can be written as

TtPLR = tr(St) − tr(�ρSt) + ln |�ρ |. (6)

If we change St to �t in Equations 5 and 6, a MEWMC-based PLR chart can be obtained. For the cases with individual
observations, Yeh, Li, and Wang (2012) discussed a Lasso-MEWMC chart, termed “LMEWMC” chart in this paper. Its �ρ

is defined as the solution to the following penalised likelihood function:

�ρ = arg min�>0{tr(��t ) − ln |�| + ρ‖� − Ip×p‖1}. (7)

Correspondingly, the charting statistic of the LMEWMC chart is

TtLMEWMC = tr(�t) − tr(�ρ�t) + ln |�ρ |. (8)

Both the PLR chart and the LMEWMC chart have been shown to perform well in many cases. However, their appealing
performance depends heavily on the choice of ρ, the regularisation parameter which plays a vital role in balancing the
robustness and sensitivity of the two charts against various shifts. Unfortunately, this tuning parameter is not easy to set as
demonstrated by Yeh, Li, and Wang (2012) and Li, Wang, and Yeh (2013). Related discussions on this issue are provided
by Zou and Qiu (2009), Wang and Jiang (2009), Capizzi and Masarotto (2011) and Zou, Ning, and Tsung (2012). They also
used the penalised likelihood-based control schemes but the focuses are mainly on the monitoring of location parameters.

To circumvent this problem of setting the regularisation parameter, a new control chart based on the MEWMC is proposed
for monitoring deviations in a covariance matrix in this paper.Anew charting statistic that takes the sparsity characteristic into
account, together with a L2 norm and a maximum norm, is developed accordingly. The proposed test offers more balanced
protection against various possible shifts than the HMT chart in the sense that it is much more sensitive to process shifts
characterised by sparsity yet its ability to detect shifts not characterised by sparsity is only slightly inferior to that of the HMT
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2836 X. Shen et al.

chart. In addition, the proposed control scheme often delivers detection results approaching the best result of the LMEWMC
chart and the PLR chart. Unlike the two charts, the new approach does not require the setting of any meta parameters (except
for λ when applying an EWMA-type control chart) and does not involve numerical minimisation. We describe in detail the
MSPC scheme in Section 2, and investigate its numerical performance in Section 3. In Section 4, we demonstrate the proposed
method by applying it to a real data-set from the health care industry. We conclude with several remarks in Section 5.

2. The proposed MaxNorm chart

Recall the MEWMC sequence defined in (2). When the process is IC, �t would close to the identity matrix. Hence,
monitoring changes in the covariance matrix is tantamount to determining whether �t is significantly different from
Ip×p. Let Ct = �t − Ip×p. We can then examine the deviation of variance/covariance elements in Ct from 0. Define
dt = (ct (11), ct (12), . . . , ct (i j), . . . , ct (pp))

′, where ct (i j) is the element in covariance matrix Ct and i ≤ j . Then dt is a
[p(p + 1)/2] × 1 vector consisting of p diagonal elements and p(p − 1)/2 upper triangular off-diagonal elements.

Under the IC condition, dt is a natural estimator of the zero vector 0p(p+1)/2 = (0, 0, . . . , 0)′. Thus in Phase II monitoring,
a significant deviation of dt from 0p(p+1)/2 would indicate a change in the process. Asimilar idea of arranging all the elements
in a covariance matrix in a vector and compare it with the IC vector was discussed as early as in Yeh, Huwang, and Wu (2005).
An intuitive way of assessing the deviation is to calculate the distance between the two vectors based on a certain type of
measure. Two commonly used measures, the L2 norm and the L∞ norm, defined by

Tt1 =‖ dt ‖2=
p∑

i=1

p∑
j=i

c2
t (i j) (9)

and

Tt2 =‖ dt ‖∞= max
(|ct (11)|, . . . , |ct (pp)|

)
(10)

are adopted in this study.
When �t deviates farther from Ip×p, Tt1 and/or Tt2 will tend to have larger values. Tt1 is similar to the locally most

powerful invariant test for sphericity under the multivariate normality assumption (John 1971), defined as

Q J = np2

2
tr

(
St

tr(St )
− 1

p
Ip×p

)2

. (11)

Some control charts are essentially developed based on Q J . See Yeh, Lin, and McGrath (2006) for an excellent review.
Intuitively speaking, Tt2 is more effective than Tt1 if potential shifts occur in only a few elements in �. On the other hand,
Tt1 would outperform Tt2 if shifts occur in a moderate to large number of covariance elements. Hence, combining these two
statistics offers a more balanced detection ability. At time t , let E(Tt1) and E(Tt2) denote the expectations of Tt1 and Tt2 under
the IC state, respectively. Also let Var(Tt1) and Var(Tt2) denote the corresponding variances. When t tends to infinity, the
expectations and variances of Tt1 and Tt2 tend to their limits correspondingly. In this study, the limits are estimated through
Monte Carlo simulation. Let E(T1), E(T2), Var(T1) and Var(T2) be those limits. Then the charting statistic of our proposed
control chart, termed the “MaxNorm (maximum of the two norms) chart" for convenience, is naturally defined, for t ≥ 1, as

TtMaxNorm = max

[
Tt1 − E(T1)√

Var(T1)
,

Tt2 − E(T2)√
Var(T2)

]
. (12)

Both Tt1 and Tt2 are standardised so that they are comparable. Choosing the “max”, instead of the “average” or “min”, as
the combination method is in purpose of deriving a sensitive control chart to the shifts. This method is similar to that of
Zou and Qiu (2009), who combined a sequence of “directional” likelihood ratio test statistics obtained from a LASSO-type
minimisation.

After generating random data-sets from N (0, Ip×p), one can plot TtMaxNorm against time t and an OC signal will be issued
as soon as the value of TtMaxNorm exceeds a pre-determined upper control limit (UCL).

3. Performance studies

In this section, we compare the chart performance of the proposed MaxNorm chart with that of the other three control
charts introduced in Section 1, including the HMT chart, the LMEWMC chart and the MEWMC-based PLR chart. Note
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Table 1. ARL1 (STD) comparison between the HMT chart and the MaxNorm chart for �OCj , j ∈ [1, 7], when n = 1.

p = 5 p = 10 p = 30

�/
√

nt HMT MaxNorm HMT MaxNorm HMT MaxNorm

�OC1
1.60 18.2 (13.9) 11.7 (9.03) 27.4 (19.6) 12.8 (9.38) 66.4 (42.4) 15.5 (10.1)
3.20 11.1 (7.84) 7.32 (5.52) 16.0 (10.1) 7.89 (5.52) 42.9 (21.5) 9.58 (5.38)
4.80 8.23 (5.60) 5.67 (4.38) 12.0 (6.59) 6.05 (4.14) 33.0 (13.4) 7.29 (3.81)
6.40 6.79 (4.63) 4.69 (3.62) 9.74 (5.05) 4.97 (3.33) 27.8 (9.41) 6.00 (3.15)
8.00 5.82 (3.90) 3.98 (3.09) 8.32 (4.09) 4.24 (2.90) 24.3 (6.94) 5.14 (2.63)

�OC2
1.60 27.8 (21.0) 17.4 (14.5) 48.1 (35.5) 21.1 (17.4) 110 (77.0) 26.8 (22.2)
3.20 18.4 (13.4) 11.4 (9.46) 32.2 (21.2) 13.5 (10.9) 82.7 (50.3) 16.6 (13.0)
4.80 14.4 (10.3) 9.24 (7.64) 25.4 (15.6) 10.5 (8.37) 70.1 (38.0) 12.7 (10.0)
6.40 12.2 (8.46) 7.70 (6.32) 21.7 (12.9) 8.94 (7.15) 61.2 (31.1) 10.6 (8.43)
8.00 10.9 (7.58) 6.88 (5.77) 19.0 (10.9) 7.88 (6.37) 56.0 (26.4) 9.24 (7.44)

�OC3
1.60 29.5 (19.2) 48.8 (42.8) 50.4 (33.4) 77.7 (71.5) 110 (72.5) 155 (147)
3.20 18.4 (9.87) 29.6 (24.0) 31.2 (16.1) 46.6 (39.6) 77.4 (40.8) 116 (107)
4.80 14.3 (7.01) 22.1 (17.3) 24.0 (10.5) 34.1 (27.9) 61.7 (26.9) 89.4 (80.3)
6.40 11.9 (5.43) 17.9 (13.5) 20.4 (7.71) 27.4 (21.4) 52.7 (19.2) 72.6 (64.5)
8.00 10.3 (4.44) 15.6 (11.2) 17.8 (6.05) 23.4 (18.0) 46.7 (14.4) 60.7 (51.7)

�OC4
1.60 17.8 (5.66) 50.6 (42.9) 28.5 (9.27) 70.1 (60.0) 67.4 (29.1) 109 (99.1)
3.20 12.4 (4.21) 21.1 (16.2) 19.9 (5.27) 28.0 (21.0) 45.2 (8.84) 41.5 (32.6)
4.80 10.1 (4.33) 12.1 (9.34) 16.7 (5.34) 16.1 (12.3) 41.6 (8.40) 22.4 (17.6)
6.40 8.26 (4.13) 8.33 (6.45) 14.2 (5.20) 10.2 (8.16) 38.1 (7.84) 12.8 (9.90)
8.00 6.91 (3.87) 6.18 (4.98) 12.3 (4.92) 7.27 (5.74) 35.2 (7.51) 8.54 (6.68)

�OC5
1.60 27.5 (20.6) 23.0 (19.7) 48.7 (35.2) 32.2 (27.1) 110 (76.6) 57.0 (49.6)
3.20 18.2 (13.3) 15.1 (12.2) 31.9 (21.0) 20.7 (16.6) 83.4 (51.0) 35.4 (29.0)
4.80 14.5 (10.1) 11.9 (9.46) 25.3 (15.6) 16.1 (12.4) 69.6 (38.7) 27.1 (21.9)
6.40 12.3 (8.55) 10.1 (8.08) 21.4 (12.6) 13.6 (10.3) 61.1 (31.0) 22.2 (17.1)
8.00 10.8 (7.41) 8.91 (7.09) 19.1 (10.9) 12.0 (8.99) 55.8 (25.1) 18.9 (14.6)

�OC6
1.60 28.7 (21.1) 25.3 (21.4) 49.2 (35.4) 35.5 (29.9) 110 (74.7) 56.4 (49.6)
3.20 18.5 (13.0) 14.5 (11.8) 31.9 (20.9) 19.4 (15.6) 84.3 (52.5) 29.3 (24.5)
4.80 14.6 (10.4) 10.9 (8.73) 25.2 (15.6) 14.3 (11.1) 70.1 (38.9) 19.8 (15.8)
6.40 12.0 (8.36) 8.82 (7.05) 21.1 (12.3) 11.2 (8.69) 60.5 (30.6) 15.2 (11.8)
8.00 10.4 (7.26) 7.52 (5.97) 18.4 (10.7) 9.52 (7.33) 54.5 (25.1) 12.5 (9.51)

�OC7
1.60 23.7 (17.7) 17.8 (14.6) 41.6 (29.1) 25.2 (20.6) 101 (67.0) 43.6 (37.0)
3.20 14.8 (10.2) 11.6 (9.13) 26.8 (16.7) 15.7 (11.9) 75.0 (43.3) 26.4 (21.2)
4.80 11.5 (7.71) 9.03 (6.93) 20.9 (12.2) 12.1 (9.09) 62.1 (32.2) 19.6 (14.7)
6.40 9.67 (6.48) 7.58 (5.90) 17.6 (9.60) 10.4 (7.60) 53.8 (24.8) 15.9 (11.9)
8.00 8.42 (5.57) 6.55 (5.15) 15.5 (8.19) 8.79 (6.35) 48.8 (21.0) 13.9 (10.0)

that the original PLR chart discussed by Li, Wang, and Yeh (2013) was built on the sample covariance matrices. Therefore,
we also conduct a comparison between the MaxNorm chart with its λ being 1 and the original PLR chart in this section. In
particular, we study the OC average run length (ARL), ARL1, assuming that all control charts are designed to have the same
IC ARL, ARL0. Following the simulations conducted in Hawkins and Maboudou-Tchao (2008), Yeh, Li, and Wang (2012)
and Li, Wang, and Yeh (2013), we set λ = 0.1 for all the control charts. Moreover, we set ARL0 to 200 the simulation size
to 10, 000.

Assume that � = Ip×p when the process is IC and � = �OC �= Ip×p when the process is OC, where �OC is some specific
covariance matrix. To evaluate the performance of control charts under various situations, we follow Li, Wang, and Yeh (2013)
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2838 X. Shen et al.

Table 2. ARL1 (STD) comparison between the HMT chart and the MaxNorm chart for �OCj , j ∈ [1, 7], when n = 20.

p = 5 p = 10 p = 30

�/
√

nt HMT MaxNorm HMT MaxNorm HMT MaxNorm

�OC1
1.60 6.82 (2.75) 7.47 (3.55) 10.3 (3.80) 10.1 (4.65) 22.2 (10.0) 15.1 (6.47)
3.20 4.33 (1.56) 4.33 (1.80) 6.46 (1.94) 5.83 (2.16) 13.3 (3.86) 9.09 (2.84)
4.80 3.31 (1.17) 3.23 (1.31) 4.98 (1.38) 4.34 (1.50) 10.3 (2.33) 6.96 (1.90)
6.40 2.73 (0.97) 2.61 (1.06) 4.18 (1.13) 3.55 (1.17) 8.71 (1.73) 5.87 (1.50)
8.00 2.33 (0.85) 2.19 (0.89) 3.61 (0.96) 3.03 (1.00) 7.67 (1.38) 6.89 (1.27)

�OC2
1.60 8.04 (3.46) 5.90 (5.90) 12.9 (5.25) 6.30 (3.30) 32.2 (16.9) 6.89 (3.58)
3.20 5.18 (2.08) 3.57 (3.57) 8.41 (2.80) 3.76 (1.93) 20.1 (7.15) 4.05 (2.00)
4.80 4.02 (1.59) 2.64 (2.64) 6.63 (2.07) 2.81 (1.49) 15.9 (4.53) 3.05 (1.56)
6.40 3.38 (1.36) 2.15 (2.15) 5.65 (1.74) 2.28 (1.22) 13.5 (3.36) 2.47 (1.26)
8.00 2.96 (1.19) 1.83 (1.83) 4.98 (1.50) 1.92 (1.07) 12.1 (2.76) 2.12 (1.13)

�OC3
1.60 7.96 (3.00) 8.46 (2.70) 12.7 (4.57) 16.1 (6.06) 30.9 (14.7) 36.8 (19.6)
3.20 5.17 (1.72) 4.97 (1.40) 8.29 (2.34) 9.84 (2.91) 18.9 (5.58) 19.7 (6.72)
4.80 4.00 (1.29) 3.73 (1.01) 6.54 (1.66) 7.58 (2.02) 15.0 (3.54) 14.6 (4.15)
6.40 3.36 (1.08) 3.03 (0.84) 5.58 (1.37) 6.38 (1.61) 12.9 (2.53) 12.1 (3.12)
8.00 2.94 (0.96) 2.58 (0.74) 4.91 (1.18) 5.58 (1.40) 11.5 (2.02) 10.5 (2.66)

�OC4
1.60 7.05 (2.03) 8.46 (2.70) 11.0 (3.01) 9.26 (3.11) 24.9 (9.04) 10.4 (3.55)
3.20 4.49 (1.06) 4.97 (1.40) 7.08 (1.37) 5.34 (1.54) 15.2 (2.97) 5.89 (1.65)
4.80 3.46 (0.77) 3.73 (1.01) 5.56 (0.94) 3.95 (1.08) 11.9 (1.64) 4.33 (1.15)
6.40 2.89 (0.64) 3.03 (0.84) 4.70 (0.74) 3.22 (0.89) 10.2 (1.13) 3.56 (0.92)
8.00 2.53 (0.57) 2.58 (0.74) 4.13 (0.65) 2.75 (0.77) 9.06 (0.87) 3.01 (0.80)

�OC5
1.60 8.00 (3.48) 10.2 (4.87) 12.9 (5.23) 13.6 (6.24) 32.6 (17.1) 20.6 (10.6)
3.20 5.17 (2.07) 6.09 (2.61) 8.39 (2.81) 8.15 (3.24) 20.1 (7.12) 11.4 (4.85)
4.80 4.05 (1.61) 4.59 (1.92) 6.61 (2.08) 6.21 (2.32) 15.9 (4.60) 8.36 (3.38)
6.40 3.38 (1.37) 3.74 (1.57) 5.64 (1.72) 5.18 (1.92) 13.6 (3.46) 6.78 (2.65)
8.00 2.96 (1.21) 3.25 (1.38) 4.98 (1.51) 4.47 (1.66) 12.2 (2.76) 5.80 (2.28)

�OC6
1.60 7.81 (3.02) 9.27 (3.73) 12.4 (4.48) 10.4 (4.08) 30.1 (14.5) 11.8 (4.69)
3.20 5.12 (1.88) 5.75 (2.18) 8.25 (2.57) 6.40 (2.34) 19.4 (6.28) 7.12 (2.51)
4.80 4.04 (1.52) 4.40 (1.68) 6.57 (1.92) 5.00 (1.82) 15.5 (4.19) 5.54 (1.98)
6.40 3.38 (1.31) 3.66 (1.46) 5.65 (1.67) 4.19 (1.59) 13.6 (3.27) 4.64 (1.70)
8.00 2.96 (1.16) 3.14 (1.30) 4.96 (1.47) 3.66 (1.41) 12.1 (2.66) 4.03 (1.52)

�OC7
1.60 7.43 (3.02) 9.31 (4.43) 12.0 (4.64) 12.2 (5.56) 29.9 (14.6) 17.6 (8.51)
3.20 4.77 (1.78) 5.52 (2.28) 7.75 (2.43) 7.26 (2.73) 18.5 (6.14) 9.83 (4.10)
4.80 3.71 (1.37) 4.11 (1.63) 6.10 (1.77) 5.53 (1.99) 14.5 (3.74) 7.21 (2.86)
6.40 3.07 (1.14) 3.38 (1.34) 5.17 (1.45) 4.56 (1.64) 12.4 (2.82) 5.88 (2.29)
8.00 2.67 (1.00) 2.88 (1.15) 4.54 (1.27) 3.95 (1.40) 11.1 (2.30) 4.97 (1.91)

to test seven specific �OC’s, denoted by �OCj , j ∈ {1, 2, . . . , 7}, in the simulation studies. The seven covariance matrices
(see Appendix) can be divided into three categories. In the category (I), covariance matrices �OC1 and �OC2 , the shifts
are induced in a different number of diagonal elements. The shifts in off-diagonal elements are induced in the category
(II), covariance matrices �OC3 and �OC4 . In the category (III), covariance matrices �OC5 , �OC6 and �OC7 , the shifts
are induced in both the diagonal and off-diagonal elements. Note that �OCj , j ∈ {2, 4, 6}, were previously considered in
Hawkins and Maboudou-Tchao (2008) and �OCj , j ∈ {2, 3, 4, 6}, were studied by Yeh, Li, and Wang (2012).

Let us start with the comparison between the MaxNorm chart and the HMT chart. Notice that the HMT chart usually
performs well when majority elements change in the covariance matrix. Therefore, the comparison is used to show the advan-
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Table 3. ARL1 (STD) comparison between the HMT chart and the MaxNorm chart for �OCj , j ∈ [1, 7], when n = 50.

p = 5 p = 10 p = 30

�/
√

nt HMT MaxNorm HMT MaxNorm HMT MaxNorm

�OC1
1.60 4.98 (1.65) 4.68 (1.71) 7.67 (2.21) 6.54 (2.16) 16.2 (5.13) 11.1 (3.57)
3.20 3.19 (0.96) 2.89 (0.98) 4.96 (1.17) 4.10 (1.17) 10.4 (2.09) 7.21 (1.82)
4.80 2.43 (0.74) 2.17 (0.75) 3.87 (0.87) 3.15 (0.86) 8.30 (1.39) 5.70 (1.32)
6.40 2.02 (0.63) 1.76 (0.64) 3.26 (0.72) 2.61 (0.73) 7.08 (1.06) 4.85 (1.07)
8.00 1.73 (0.59) 1.49 (0.57) 2.83 (0.64) 2.25 (0.62) 6.28 (0.88) 4.28 (0.93)

�OC2
1.60 5.58 (1.99) 3.65 (1.68) 8.94 (2.81) 3.91 (1.73) 20.7 (7.63) 4.31 (1.83)
3.20 3.63 (1.20) 2.20 (1.04) 5.91 (1.59) 2.36 (1.07) 13.7 (3.33) 2.62 (1.12)
4.80 2.81 (0.95) 1.63 (0.81) 4.72 (1.19) 1.75 (0.83) 11.1 (2.19) 1.93 (0.85)
6.40 2.35 (0.81) 1.32 (0.69) 3.99 (1.01) 1.41 (0.70) 9.65 (1.70) 1.57 (0.75)
8.00 2.02 (0.73) 1.11 (0.62) 3.51 (0.90) 1.17 (0.63) 8.68 (1.45) 1.31 (0.64)

�OC3
1.60 5.56 (1.76) 7.25 (2.22) 8.86 (2.45) 10.7 (3.14) 20.2 (6.70) 22.8 (8.80)
3.20 3.62 (1.06) 4.61 (1.24) 5.91 (1.37) 6.84 (1.61) 13.3 (2.78) 13.1 (3.40)
4.80 2.81 (0.82) 3.55 (0.94) 4.68 (1.01) 5.34 (1.18) 10.8 (1.82) 9.92 (2.24)
6.40 2.35 (0.70) 2.96 (0.79) 3.98 (0.84) 4.50 (0.96) 9.34 (1.38) 8.27 (1.83)
8.00 2.04 (0.62) 2.57 (0.70) 3.51 (0.75) 3.94 (0.85) 8.39 (1.17) 7.13 (1.56)

�OC4
1.60 5.12 (1.30) 8.46 (2.70) 8.03 (1.80) 9.26 (3.11) 17.6 (4.62) 10.4 (3.55)
3.20 3.31 (0.74) 4.97 (1.40) 5.34 (0.93) 5.34 (1.54) 11.6 (1.78) 5.89 (1.65)
4.80 2.55 (0.57) 3.73 (1.01) 4.21 (0.68) 3.95 (1.08) 9.33 (1.10) 4.33 (1.15)
6.40 2.11 (0.47) 3.03 (0.84) 3.56 (0.57) 3.22 (0.89) 8.05 (0.82) 3.56 (0.92)
8.00 1.86 (0.40) 2.58 (0.74) 3.12 (0.48) 2.75 (0.77) 7.20 (0.67) 3.01 (0.80)

�OC5
1.60 5.59 (1.97) 6.32 (2.40) 8.92 (2.75) 8.69 (3.06) 20.8 (7.54) 12.6 (5.14)
3.20 3.62 (1.21) 3.95 (1.38) 5.94 (1.57) 5.54 (1.73) 13.7 (3.24) 7.40 (2.63)
4.80 2.81 (0.94) 3.02 (1.06) 4.71 (1.19) 4.31 (1.32) 11.1 (2.20) 5.56 (1.83)
6.40 2.36 (0.83) 2.50 (0.88) 4.01 (1.00) 3.61 (1.09) 9.65 (1.70) 4.59 (1.49)
8.00 2.03 (0.74) 2.16 (0.80) 3.52 (0.89) 3.13 (0.96) 8.63 (1.43) 3.95 (1.29)

�OC6
1.60 5.43 (1.70) 5.74 (1.81) 8.60 (2.34) 6.28 (1.94) 19.5 (6.21) 7.07 (2.17)
3.20 3.56 (1.09) 3.66 (1.11) 5.83 (1.40) 3.99 (1.17) 13.2 (2.88) 4.44 (1.24)
4.80 2.79 (0.88) 2.86 (0.90) 4.65 (1.09) 3.10 (0.93) 10.8 (1.98) 3.46 (0.97)
6.40 2.33 (0.77) 2.41 (0.79) 3.96 (0.94) 2.64 (0.83) 9.51 (1.62) 2.92 (0.86)
8.00 2.02 (0.71) 2.08 (0.73) 3.52 (0.86) 2.31 (0.74) 8.58 (1.34) 2.58 (0.78)

�OC7
1.60 5.35 (1.82) 5.76 (2.14) 8.52 (2.51) 7.87 (2.74) 19.7 (6.69) 11.0 (4.34)
3.20 3.43 (1.09) 3.58 (1.21) 5.64 (1.40) 4.99 (1.53) 12.9 (2.87) 6.53 (2.27)
4.80 2.64 (0.84) 2.73 (0.92) 4.46 (1.05) 3.86 (1.17) 10.5 (1.91) 4.91 (1.62)
6.40 2.19 (0.71) 2.24 (0.77) 3.76 (0.87) 3.20 (0.97) 9.06 (1.47) 4.03 (1.30)
8.00 1.90 (0.65) 1.92 (0.68) 3.30 (0.77) 2.80 (0.87) 8.12 (1.24) 3.47 (1.12)

tage of the MaxNorm chart in the cases of sparsity and also the satisfactory performance of the chart when majority elements
change in the covariance matrix. In addition to the HMT chart, Yeh, Huwang, and Wu (2005) and Huwang, Yeh, and Wu
(2007) proposed the MaxMEWMV chart and the MEWMS chart based on the MEWMC, respectively, both of which are
powerful for detecting shifts that occur in the majority elements. We compared the three control charts through the simulations
and found the following facts. The MEWMS chart with the charting statistic of tr(�t ) is particularly powerful when the
diagonal elements shifted in a covariance matrix. However, it is usually uncompetitive in detecting shifts of off-diagonal
elements. The HMT chart and the MaxMEWMV chart have their merits in different scenarios of OC covariance matrix
respectively. In general, the overall performance of the HMT chart and the MaxMEWMV chart are comparable, and both of
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Table 4. ARL1 (STD) comparison between the MEWMC-based PLR chart, the LMEWMC chart and the MaxNorm chart for �OCj ,
j ∈ {1, 2, 3, 4}, when n = 1.

p = 5 p = 30

�
MEWMC-based PLR with ρ LMEWMC with ρ MaxNorm MEWMC-based PLR with ρ LMEWMC with ρ MaxNorm

0.05 0.20 1.00 0.05 0.20 1.00 0.05 0.20 1.00 0.05 0.20 1.00

�OC1
0.8 27.9 21.3 14.5 28.3 22.4 21.9 18.6 40.7 25.9 14.6 38.4 25.3 33.5 25.1

(22.7) (17.1) (11.5) (23.1) (17.9) (18.6) (15.7) (24.1) (15.1) (9.73) (21.1) (14.1) (28.2) (18.7)
1.2 20.4 15.9 11.2 21.2 16.8 16.4 14.3 32.5 20.4 11.4 31.4 19.9 25.3 18.7

(15.7) (12.2) (8.59) (16.4) (13.0) (13.4) (11.4) (17.0) (10.9) (7.06) (15.6) (10.1) (20.2) (12.9)
1.6 16.8 13.1 9.33 17.2 14.0 13.6 11.7 27.6 17.3 9.47 26.9 17.1 20.5 15.5

(12.7) (9.72) (7.02) (13.1) (10.4) (10.9) (9.10) (13.3) (8.23) (5.61) (12.2) (7.77) (15.7) (9.87)
2.0 14.6 11.3 8.05 14.6 11.8 12.0 10.2 24.4 15.2 8.13 24.1 15.2 17.9 13.3

(10.8) (8.47) (6.00) (10.7) (8.78) (9.43) (7.89) (10.4) (6.73) (4.69) (9.73) (6.48) (13.4) (8.13)
�OC2

0.8 40.3 34.0 28.2 42.2 37.0 26.2 27.3 107 92.1 60.1 112 107 50.4 44.5
(33.2) (28.2) (24.7) (34.5) (30.7) (22.8) (23.7) (82.2) (75.9) (54.1) (86.0) (90.0) (44.0) (39.2)

1.2 31.7 26.6 22.1 32.2 29.2 20.3 20.8 91.3 77.3 47.0 98.1 92.1 37.5 33.2
(24.6) (21.5) (19.1) (25.6) (24.0) (17.2) (17.5) (67.8) (60.9) (40.9) (73.8) (76.3) (32.6) (27.8)

1.6 26.4 22.7 18.2 27.0 24.5 17.0 17.4 80.9 67.2 39.2 87.0 82.5 30.6 26.9
(20.6) (18.0) (15.4) (20.5) (19.4) (14.3) (14.5) (58.8) (52.7) (32.6) (64.2) (67.5) (25.9) (22.2)

2.0 23.4 19.5 16.1 23.7 21.4 14.7 15.4 73.1 60.1 35.0 78.9 72.5 26.0 22.8
(17.9) (14.9) (13.2) (17.8) (16.8) (12.3) (12.8) (50.6) (45.8) (28.7) (55.3) (57.2) (21.3) (18.7)

�OC3
0.8 47.8 52.5 153 48.2 48.3 143 79.8 145 151 189 147 149 170 176

(36.5) (43.5) (153) (37.4) (39.4) (137) (73.5) (119) (133) (184) (123) (132) (163) (168)
1.2 36.2 39.7 137 35.9 36.2 124 59.9 125 133 181 126 134 157 163

(26.5) (31.6) (134) (25.1) (27.5) (116) (54.4) (102) (113) (176) (100) (115) (148) (158)
1.6 29.6 32.3 123 29.2 29.8 107 49.3 113 116 172 115 121 142 151

(19.5) (24.4) (120) (19.4) (21.9) (101) (43.8) (86.9) (99.0) (167) (88.8) (104) (139) (142)
2.0 24.9 27.5 115 25.1 25.6 92.8 41.2 102 104 165 102 108 128 143

(15.6) (19.8) (112) (16.1) (18.7) (84.9) (35.7) (77.3) (86.3) (158) (76.1) (91.5) (121) (135)
�OC4

0.8 36.7 45.3 129 36.4 38.5 75.3 86.9 127 132 174 128 131 116 169
(23.2) (34.8) (127) (22.9) (27.9) (65.7) (80.8) (101) (114) (169) (100) (115) (107) (164)

1.2 24.5 30.1 101 24.3 26.1 47.7 64.8 99.3 107 156 98.8 100 77.7 138
(11.7) (19.1) (96.7) (11.5) (16.1) (40.0) (57.7) (71.6) (88.9) (150) (70.8) (82.2) (67.1) (132)

1.6 18.3 22.1 82.7 18.1 19.8 34.8 49.9 74.2 85.4 140 70.8 71.4 57.0 109
(6.53) (11.4) (77.5) (6.53) (10.4) (26.6) (42.9) (47.1) (65.3) (132) (42.4) (50.8) (45.8) (101)

2.0 14.7 17.4 66.8 14.8 16.1 27.5 40.5 51.2 67.1 122 43.0 43.0 42.8 86.1
(4.14) (7.30) (60.8) (4.25) (7.62) (19.6) (33.2) (23.3) (46.7) (113) (13.8) (20.1) (32.8) (77.1)

which are better than the overall performance of the MEWMS chart under various OC scenarios. Therefore, in this study,
we choose the HMT chart for the comparison.

We simulate the data based on the seven specific �OC’s individually at the beginning of Phase II monitoring. The ARL1,
which indicates the number of samples taken before the first OC signal is detected, is calculated. The UCL of each control
chart for a given dimensionality p ∈ {5, 10, 30} and subgroup size n ∈ {1, 20, 50} is determined through Monte Carlo
simulation before the monitoring process. Let the deviation

� = √
n ‖ �OCj − Ip×p ‖2, (13)

where j ∈ {1, 2, . . . , 7}, increases from 1.6 to 8.0 in steps of 1.6. The overall performance, represented by ARL1 and its
standard deviation (STD), is presented in Tables 1–3.
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Table 5. ARL1 (STD) comparison between the MEWMC-based PLR chart, the LMEWMC chart and the MaxNorm chart for �OCj ,
j ∈ {5, 6, 7}, when n = 1.

p = 5 p = 30

�
MEWMC-based PLR with ρ LMEWMC with ρ MaxNorm MEWMC-based PLR with ρ LMEWMC with ρ MaxNorm

0.05 0.20 1.00 0.05 0.20 1.00 0.05 0.20 1.00 0.05 0.20 1.00

�OC5
0.8 41.1 35.8 35.0 41.2 35.3 42.6 36.5 108 93.8 74.2 109 97.3 81.7 85.9

(34.1) (30.1) (31.6) (33.9) (28.9) (39.1) (32.4) (84.1) (76.9) (67.2) (84.8) (80.6) (74.1) (79.1)
1.2 31.9 28.0 27.4 32.2 28.1 33.5 27.7 93.8 79.5 60.1 94.7 86.2 62.2 67.7

(25.1) (22.6) (23.9) (25.4) (22.8) (29.6) (23.7) (70.0) (63.6) (54.1) (70.4) (70.6) (55.8) (60.8)
1.6 26.6 23.2 23.1 26.9 23.7 27.7 22.9 81.6 69.9 51.2 84.1 76.0 50.7 57.6

(20.5) (18.6) (19.8) (20.7) (18.6) (24.3) (19.7) (58.4) (53.9) (45.0) (61.2) (60.1) (44.1) (50.7)
2.0 23.0 20.3 20.1 23.5 20.2 24.1 20.3 73.9 61.6 44.4 76.3 68.9 42.8 49.2

(17.2) (16.0) (17.3) (17.6) (15.4) (20.8) (17.2) (50.9) (46.1) (38.3) (52.6) (53.5) (37.1) (42.8)
�OC6

0.8 43.0 40.1 47.1 42.8 39.2 48.6 44.6 118 108 92.4 119 112 82.8 102
(34.0) (33.0) (43.2) (33.7) (32.0) (43.9) (40.6) (93.7) (92.5) (84.4) (92.9) (94.7) (75.4) (95.1)

1.2 32.7 30.2 33.5 33.2 29.7 34.7 32.2 98.0 88.4 69.6 102 95.4 58.8 73.5
(25.2) (24.7) (30.1) (26.0) (23.5) (30.5) (27.5) (74.0) (72.6) (63.2) (78.1) (78.3) (51.8) (66.6)

1.6 27.4 24.4 26.3 27.5 24.8 27.3 25.3 86.4 74.5 55.2 90.0 81.7 46.0 56.6
(20.4) (19.2) (23.1) (21.2) (19.4) (23.2) (21.4) (62.9) (59.1) (48.8) (65.9) (64.4) (39.6) (49.4)

2.0 23.7 21.0 21.7 23.9 21.5 22.6 21.1 77.7 64.7 45.4 80.6 74.0 37.5 45.6
(17.7) (16.3) (18.7) (17.6) (16.5) (19.0) (17.9) (55.1) (49.8) (39.1) (58.0) (58.2) (31.8) (39.8)

�OC7
0.8 34.9 28.9 24.5 35.2 29.8 33.5 28.3 96.5 78.3 57.3 96.2 83.5 68.0 68.2

(27.3) (23.7) (21.1) (28.1) (24.2) (29.9) (23.7) (74.4) (63.6) (50.2) (72.2) (69.2) (62.1) (62.0)
1.2 26.8 22.6 19.3 26.9 23.1 25.6 21.7 80.1 64.3 45.2 82.1 70.6 52.0 52.7

(20.9) (17.8) (16.2) (20.8) (18.0) (21.9) (18.1) (57.5) (48.5) (39.5) (59.6) (54.7) (46.3) (46.1)
1.6 22.5 18.5 15.8 22.3 18.9 21.4 18.2 70.0 55.3 36.8 73.2 61.3 41.9 43.4

(16.8) (14.0) (12.7) (16.9) (14.3) (18.0) (14.9) (47.1) (41.0) (30.8) (50.5) (46.1) (35.6) (36.8)
2.0 19.3 16.3 13.8 19.3 16.8 18.7 15.5 62.4 49.4 31.7 65.3 54.8 35.0 37.2

(14.1) (12.3) (11.1) (14.0) (12.8) (15.3) (12.4) (40.4) (35.0) (25.4) (43.5) (40.5) (28.6) (31.4)

When the OC covariance matrix is one of the category (I) covariance matrices, the MaxNorm chart outperforms the HMT
chart regardless of the dimensionality p or the subgroup size n. For a given n, the superiority of the MaxNorm chart grows
as p increases. As increasing the dimensionality is equivalent to increasing the degree of sparsity of the covariance matrix,
it can be concluded that, for the category (I) covariance matrices, the better performance of the MaxNorm chart becomes all
the more apparent as the degree of sparsity increases.

For the category (II) covariance matrices, with a sufficiently large n (e.g. n ≥ 20 in the simulation study), the HMT chart
performs better with a small p while the MaxNorm chart turns the tables when the degree of sparsity enhances. When n is
small, even though the MaxNorm chart is still not able to outperform the HMT chart, the performance gap between the two
narrows gradually as the sparsity increases.

In the case of the category (III) covariance matrices, with a fixed n, the MaxNorm chart tends to perform better than the
HMT chart when the shifts are characterised by a more significant sparsity. The advantage of the MaxNorm chart in terms
of sparsity becomes more significant when n becomes large.

In conclusion, the MaxNorm chart is usually competitive when shifts are characterised by sparsity. The superiority of
the MaxNorm chart becomes more obvious when the degree of sparsity increases. When sparsity is not significant, the
performance of the MaxNorm chart is similar to the HMT chart as long as the subgroup size is large enough. Therefore, the
MaxNorm chart is in general good at detecting shifts in the covariance matrix.

Next, we compare the performance of the MaxNorm chart with that of the two penalised likelihood-based control charts,
i.e. the MEWMC-based PLR chart when the subgroup size n ≥ 1 and the LMEWMC chart when n = 1. The regularisation
parameter ρ in these two charts needs to be determined according to the specific OC covariance matrix to achieve the best
performance of the charts. In other words, for a specific �OC, the MEWMC-based PLR chart and the LMEWMC chart with

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

eb
ra

sk
a,

 L
in

co
ln

] 
at

 2
3:

47
 0

2 
A

pr
il 

20
15

 



2842 X. Shen et al.

Table 6. ARL1 (STD) comparison between the MEWMC-based PLR chart and the MaxNorm chart for �OCj , j ∈ [1, 7], when n = 50.

p = 5 p = 30

�
MEWMC-based PLR with ρ MaxNorm MEWMC-based PLR with ρ MaxNorm

0.05 0.20 1.00 0.05 .20 1.00

�OC1
0.8 8.35 (3.47) 3.78 (1.92) 2.93 (1.43) 7.76 (3.43) 23.8 (11.1) 5.32 (2.26) 1.36 (0.76) 18.6 (8.63)
1.2 6.12 (2.31) 2.78 (1.38) 2.38 (1.04) 5.73 (2.22) 16.6 (5.85) 4.03 (1.56) 1.18 (0.46) 13.5 (4.98)
1.6 4.95 (1.74) 2.28 (1.10) 2.06 (0.84) 4.67 (1.72) 13.3 (3.88) 3.31 (1.21) 1.10 (0.36) 11.1 (3.56)
2.0 4.20 (1.42) 1.93 (0.94) 1.86 (0.75) 3.99 (1.41) 11.4 (2.89) 2.85 (0.99) 1.06 (0.25) 9.62 (2.79)

�OC2
0.8 8.37 (3.60) 5.14 (2.57) 5.79 (4.53) 6.04 (2.91) 24.2 (10.2) 9.68 (4.31) 11.1 (18.1) 7.34 (3.48)
1.2 6.27 (2.47) 3.87 (1.86) 4.22 (3.09) 4.50 (2.06) 18.2 (6.25) 7.38 (2.96) 7.18 (11.5) 5.31 (2.40)
1.6 5.17 (1.97) 3.17 (1.50) 3.34 (2.42) 3.64 (1.66) 15.2 (4.48) 6.14 (2.27) 5.36 (8.19) 4.30 (1.85)
2.0 4.44 (1.65) 2.76 (1.30) 3.02 (1.98) 3.13 (1.41) 13.2 (3.49) 5.31 (1.94) 4.24 (6.48) 3.65 (1.58)

�OC3
0.8 10.9 (4.07) 195 (192) 192 (207) 11.9 (4.52) 28.7 (12.7) 202 (200) 199 (295) 47.9 (30.5)
1.2 8.28 (2.69) 191 (185) 188 (200) 8.86 (2.91) 20.3 (6.82) 201 (202) 198 (292) 30.2 (14.4)
1.6 6.86 (2.06) 176 (168) 186 (197) 7.22 (2.17) 16.6 (4.62) 197 (195) 197 (292) 22.7 (8.60)
2.0 5.98 (1.70) 144 (136) 181 (194) 6.24 (1.81) 14.2 (3.44) 184 (177) 198 (287) 18.7 (6.04)

�OC4
0.8 7.94 (2.49) 25.2 (12.1) 193 (204) 9.25 (3.17) 21.7 (7.46) 37.1 (21.4) 198 (289) 11.8 (4.19)
1.2 5.96 (1.64) 14.8 (5.01) 189 (200) 6.69 (1.97) 16.1 (4.18) 19.7 (7.59) 201 (292) 8.24 (2.49)
1.6 4.93 (1.27) 11.1 (3.15) 186 (198) 5.38 (1.50) 13.3 (2.79) 14.3 (4.35) 197 (288) 6.51 (1.80)
2.0 4.23 (1.04) 9.08 (2.30) 179 (189) 4.59 (1.23) 11.6 (2.11) 11.5 (2.98) 197 (294) 5.51 (1.41)

�OC5
0.8 9.85 (4.17) 9.49 (5.84) 6.68 (5.47) 10.5 (4.69) 26.5 (11.9) 19.6 (12.1) 14.4 (24.7) 23.2 (12.3)
1.2 7.32 (2.80) 7.02 (4.01) 4.81 (3.81) 7.73 (3.10) 19.4 (6.75) 14.2 (7.71) 9.41 (15.7) 15.9 (7.18)
1.6 5.99 (2.20) 5.69 (3.06) 3.90 (2.95) 6.33 (2.36) 15.9 (4.84) 11.3 (5.53) 6.99 (11.8) 12.6 (5.13)
2.0 5.11 (1.83) 4.88 (2.59) 3.23 (2.39) 5.41 (1.98) 13.8 (3.72) 9.64 (4.35) 5.48 (8.90) 10.5 (4.08)

�OC6
0.8 8.40 (2.99) 21.4 (11.7) 36.0 (37.0) 9.57 (3.54) 23.3 (9.06) 32.9 (20.2) 74.4 (117) 12.3 (4.68)
1.2 6.37 (2.13) 13.2 (6.01) 20.8 (20.5) 7.03 (2.34) 17.5 (5.34) 18.7 (8.32) 47.2 (76.8) 8.80 (2.87)
1.6 5.29 (1.72) 9.86 (4.01) 13.6 (12.8) 5.78 (1.78) 14.6 (3.77) 13.7 (5.09) 32.9 (53.6) 7.02 (2.15)
2.0 4.58 (1.44) 7.96 (3.18) 10.2 (9.14) 4.98 (1.54) 12.8 (3.02) 11.0 (3.76) 22.8 (37.4) 6.02 (1.78)

�OC7
0.8 9.38 (3.98) 6.57 (3.79) 4.00 (3.06) 9.67 (4.22) 25.2 (11.1) 13.7 (7.38) 7.34 (12.3) 19.7 (9.91)
1.2 6.91 (2.63) 4.89 (2.58) 2.85 (2.08) 7.08 (2.78) 18.5 (6.25) 10.1 (4.75) 4.67 (7.68) 14.0 (6.05)
1.6 5.65 (2.02) 3.97 (2.02) 2.28 (1.70) 5.76 (2.14) 15.2 (4.36) 8.13 (3.51) 3.41 (5.55) 10.9 (4.33)
2.0 4.82 (1.65) 3.39 (1.70) 1.91 (1.40) 4.98 (1.75) 13.1 (3.30) 7.03 (2.81) 2.70 (4.43) 9.15 (3.45)

different values of ρ will have unstable detection performance. To show the influence of ρ, a range of ρ should be determined
first. In the previous studies, Li, Wang, and Yeh (2013) tested ρ in the interval [0.05, 2.0] and Yeh, Li, and Wang (2012)
considered the ρ within the interval [0.02, 1.2]. From their simulations, it can be observed that the values of ρ close to the
lower bound (e.g. 0.05 and 0.02) or the upper bound (e.g. 2.0 and 1.2) of the intervals bring worse performance of the control
charts in most cases. Therefore, in this paper, we specify ρ ∈ {0.05, 0.20, 1.00} for the two control charts, where 0.05 is a
boundary value of the intersection of the two intervals mentioned above, 0.20 is an intermediate value studied by both of the
studies and 1.00 is a large value close to the upper bound of the intersection. Other parameters are set as follows. To ensure
that all the �OC’s are singular in the following simulations, the deviation � in 13 is set to change from 0.8 to 2.0 in steps of
0.4. Let the subgroup size n ∈ {1, 50} and the dimensionality p ∈ {5, 30}. The performance of the charts in terms of ARL1
and its STD is shown in Tables 4–6.

When n = 1, we compare the MaxNorm chart with both the MEWMC-based PLR chart and the LMEWMC chart. Tables
4 and 5 indicate that different ρ’s give different ARL1’s of the PLR chart and the LMEWMC chart when other parameters are
kept constant. In the case of �OC2 with p = 30 and the cases of �OC3 and �OC4 with p = 5, the value of ρ even becomes
the decisive factor for the performance of the two penalised likelihood-based control charts.
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Table 7. ARL1 (STD) comparison between the PLR chart and the MaxNorm chart for �OCj , j ∈ [1, 7], when n = 20.

p = 5 p = 10

�
PLR with ρ MaxNorm PLR with ρ MaxNorm

0.05 0.20 1.00 0.05 0.20 1.00

�OC1
0.8 52.3 (52.5) 20.6 (21.0) 9.66 (10.5) 15.8 (16.0) 59.0 (60.9) 22.3 (22.9) 10.0 (10.4) 20.4 (21.0)
1.2 36.1 (36.6) 13.8 (14.1) 5.96 (6.51) 9.95 (10.4) 43.0 (43.5) 14.4 (14.9) 6.08 (6.65) 12.9 (13.4)
1.6 26.4 (26.7) 9.71 (10.1) 4.17 (4.68) 7.11 (7.53) 33.1 (33.5) 10.2 (10.5) 4.10 (4.56) 9.19 (9.68)
2.0 20.3 (20.7) 7.27 (7.74) 3.13 (3.65) 5.30 (5.79) 26.7 (26.9) 7.71 (8.09) 3.13 (3.62) 6.92 (7.48)

�OC2
0.8 64.2 (64.9) 35.6 (36.2) 26.3 (27.0) 21.7 (22.0) 97.4 (97.6) 59.8 (60.6) 42.4 (43.2) 30.1 (30.8)
1.2 44.0 (45.5) 23.9 (24.5) 17.7 (18.0) 14.1 (14.4) 76.7 (76.4) 43.4 (44.3) 29.9 (30.5) 19.1 (19.5)
1.6 34.0 (34.9) 17.3 (17.7) 12.9 (13.3) 9.92 (10.4) 61.0 (60.6) 33.7 (34.1) 22.6 (22.9) 13.2 (13.7)
2.0 25.8 (26.5) 13.3 (13.9) 10.2 (10.6) 7.53 (7.94) 51.7 (51.4) 26.3 (26.9) 17.3 (17.8) 10.2 (10.6)

�OC3
0.8 75.2 (75.9) 71.2 (69.9) 174 (175) 107 (108) 126 (129) 116 (118) 186 (185) 159 (161)
1.2 53.9 (55.2) 48.6 (48.8) 166 (166) 81.6 (81.3) 102 (103) 90.9 (90.8) 180 (179) 137 (139)
1.6 38.4 (39.1) 34.8 (35.5) 155 (152) 63.7 (64.1) 84.8 (85.3) 73.8 (74.5) 174 (174) 123 (125)
2.0 29.4 (30.3) 26.4 (26.9) 147 (147) 50.5 (51.3) 69.7 (69.8) 60.6 (60.9) 167 (167) 107 (107)

�OC4
0.8 76.1 (75.8) 76.1 (75.5) 173 (174) 120 (122) 123 (125) 120 (118) 184 (183) 168 (168)
1.2 50.5 (51.1) 50.5 (51.6) 156 (155) 98.0 (98.5) 96.5 (95.4) 93.3 (93.9) 176 (175) 150 (151)
1.6 35.3 (35.6) 36.0 (36.1) 140 (140) 76.8 (77.3) 79.2 (79.8) 73.0 (73.7) 164 (166) 134 (135)
2.0 24.8 (25.0) 26.8 (27.3) 123 (125) 62.4 (63.0) 62.8 (63.2) 58.0 (59.2) 152 (152) 117 (117)

�OC5
0.8 65.5 (66.5) 37.9 (38.6) 36.3 (36.7) 36.4 (37.2) 98.8 (98.1) 63.0 (63.2) 55.5 (56.0) 61.5 (61.7)
1.2 46.1 (46.2) 26.4 (26.7) 25.5 (25.8) 25.0 (25.3) 78.1 (78.9) 46.2 (47.5) 41.5 (42.0) 45.8 (45.7)
1.6 34.9 (35.2) 19.1 (19.9) 19.7 (20.2) 18.4 (18.9) 64.5 (65.8) 36.3 (37.0) 33.3 (33.5) 35.6 (35.7)
2.0 26.4 (27.0) 14.8 (15.2) 15.6 (15.9) 14.2 (14.7) 52.9 (53.1) 28.8 (29.5) 26.6 (27.2) 28.1 (28.4)

�OC6
0.8 73.0 (73.3) 56.8 (56.2) 85.5 (86.0) 70.8 (71.3) 114 (114) 92.3 (92.2) 112 (112) 112 (112)
1.2 50.1 (50.3) 36.1 (36.4) 60.2 (61.1) 45.6 (46.9) 91.1 (92.6) 66.6 (67.3) 85.2 (85.4) 82.4 (82.6)
1.6 36.4 (36.7) 25.9 (26.9) 44.0 (44.7) 31.6 (31.6) 71.6 (71.7) 49.7 (50.1) 64.1 (64.7) 61.0 (61.3)
2.0 27.1 (27.4) 19.0 (19.3) 33.1 (33.5) 23.3 (23.4) 58.9 (58.9) 38.7 (39.7) 51.2 (51.9) 46.3 (47.1)

�OC7
0.8 61.2 (61.3) 31.4 (31.6) 22.6 (22.7) 27.4 (28.2) 89.2 (88.4) 50.3 (50.2) 36.6 (37.4) 48.3 (48.8)
1.2 42.5 (43.7) 21.3 (21.6) 14.8 (15.3) 18.3 (18.7) 69.2 (68.7) 36.0 (36.5) 26.1 (27.2) 33.7 (34.4)
1.6 31.5 (31.6) 15.1 (15.4) 11.3 (11.8) 13.5 (13.9) 55.8 (55.5) 27.5 (27.5) 19.6 (20.3) 25.5 (25.6)
2.0 24.3 (24.6) 11.7 (12.2) 8.69 (9.03) 10.5 (10.9) 45.1 (46.2) 21.4 (21.8) 15.5 (16.2) 19.6 (20.0)

When n = 50, we investigate the performance of the MaxNorm chart and that of the MEWMC-based PLR chart. The
results are recorded in Table 6. Again, in the cases of �OC3 and �OC4 with either p = 5 or p = 30, inappropriate ρ’s lead
to the unacceptable performance of the MEWMC-based PLR chart.

Therefore, we can conclude that the performance of the MEWMC-based PLR chart and that of the LMEWMC chart
depend crucially on ρ and that this parameter must be set carefully. However, the optimal value of ρ is partially determined
by the specific �OC which is usually unknown in reality. Setting an appropriate ρ seems to be the major obstacle to applying
the MEWMC-based PLR chart and the LMEWMC chart in real cases.

In spite of the impractical problem, we compare the ARL1’s of the two penalised likelihood-based control charts with
those of the MaxNorm chart. In most cases, the MaxNorm chart performs as well as or even better than the two charts at
their peak among a grid value of ρ’s. Though sometimes the MaxNorm chart is not competitive to the best performance of
the other two charts, it will never lead to a detection performance worse than the penalised likelihood-based charts when
inappropriate values of ρ are selected. In the case of a higher dimensionality and/or a larger subgroup size, the MaxNorm
chart carries a more significant advantage. Based on the above analysis, the MaxNorm chart is recommended when there is
no foreknowledge of the OC covariance matrix.
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Table 8. ARL1 (STD) comparison between the PLR chart and the MaxNorm chart for �OCj , j ∈ [1, 7], when n = 50.

p = 5 p = 30

�
PLR with ρ MaxNorm PLR with ρ MaxNorm

0.05 0.20 1.00 0.05 0.20 1.00

�OC1
0.8 35.0 (34.8) 12.0 (12.4) 5.15 (5.57) 10.5 (11.1) 46.6 (47.6) 13.9 (14.3) 5.11 (5.56) 25.3 (25.4)
1.2 20.7 (21.3) 7.01 (7.48) 2.88 (3.36) 6.17 (6.71) 33.7 (34.1) 8.36 (8.74) 2.79 (3.27) 14.5 (15.2)
1.6 13.8 (14.2) 4.68 (5.12) 1.87 (2.33) 4.16 (4.65) 25.5 (25.4) 5.93 (6.46) 1.73 (2.14) 9.72 (10.2)
2.0 9.71 (10.2) 3.29 (3.75) 1.29 (1.69) 2.95 (3.40) 19.7 (20.1) 4.13 (4.61) 1.17 (1.60) 6.81 (7.35)

�OC2
0.8 40.7 (41.1) 20.2 (21.0) 18.9 (19.8) 12.5 (13.1) 125 (123) 81.8 (83.4) 66.6 (67.5) 28.0 (28.3)
1.2 25.6 (25.6) 12.0 (12.3) 11.9 (12.5) 7.20 (7.70) 104 (105) 66.1 (65.8) 50.4 (50.8) 15.4 (15.9)
1.6 17.5 (18.0) 8.30 (8.84) 8.52 (8.67) 4.84 (5.25) 92.2 (91.8) 52.6 (53.3) 39.8 (39.9) 9.79 (10.2)
2.0 12.9 (13.2) 5.97 (6.51) 6.06 (6.44) 3.43 (3.89) 80.7 (81.7) 43.8 (44.1) 32.3 (33.0) 6.78 (7.33)

�OC3
0.8 46.9 (46.1) 57.1 (58.0) 185 (183) 89.3 (89.6) 160 (156) 162 (165) 202 (200) 194 (194)
1.2 27.9 (28.5) 36.2 (36.7) 178 (178) 62.1 (62.4) 144 (143) 142 (145) 195 (197) 190 (190)
1.6 18.6 (19.3) 25.0 (25.0) 170 (169) 42.4 (42.4) 128 (127) 127 (129) 195 (195) 188 (191)
2.0 13.2 (13.9) 17.8 (18.0) 164 (166) 31.8 (32.2) 118 (119) 114 (116) 193 (193) 183 (183)

�OC4
0.8 45.6 (46.5) 52.6 (53.1) 185 (187) 101 (101) 152 (150) 155 (159) 198 (197) 189 (185)
1.2 26.0 (26.3) 30.1 (30.6) 179 (178) 72.0 (72.5) 137 (139) 129 (128) 197 (196) 183 (179)
1.6 15.9 (16.5) 18.7 (19.2) 172 (173) 50.7 (50.9) 121 (123) 113 (113) 195 (196) 166 (167)
2.0 10.2 (10.9) 12.2 (12.8) 163 (165) 38.1 (37.9) 104 (105) 95.3 (95.2) 194 (195) 150 (150)

�OC5
0.8 43.0 (43.7) 26.1 (26.7) 25.7 (26.2) 26.3 (26.7) 125 (126) 90.9 (92.4) 77.8 (77.0) 100 (102)
1.2 26.0 (26.3) 15.8 (16.5) 17.5 (17.7) 16.5 (17.0) 107 (108) 71.5 (71.2) 62.4 (63.2) 77.1 (79.9)
1.6 18.0 (18.7) 10.9 (11.6) 13.0 (13.5) 11.5 (12.0) 92.7 (93.1) 58.2 (58.4) 51.8 (52.2) 60.5 (61.1)
2.0 12.9 (13.2) 7.82 (8.27) 10.1 (10.4) 8.40 (8.79) 81.8 (82.2) 49.3 (50.5) 45.0 (45.0) 49.7 (50.4)

�OC6
0.8 44.8 (45.4) 39.9 (40.3) 91.4 (92.3) 59.8 (60.8) 146 (145) 130 (131) 148 (148) 164 (166)
1.2 27.5 (28.1) 22.1 (22.7) 64.6 (65.3) 36.1 (37.0) 124 (123) 104 (105) 127 (131) 136 (136)
1.6 17.7 (18.2) 14.4 (14.9) 46.8 (47.5) 23.3 (23.3) 110 (109) 85.0 (84.6) 107 (108) 111 (111)
2.0 12.5 (13.1) 9.88 (10.3) 35.1 (35.6) 16.2 (16.7) 96.3 (97.5) 69.6 (70.1) 97.0 (97.3) 88.3 (88.9)

�OC7
0.8 39.8 (40.3) 20.5 (21.2) 14.2 (14.7) 19.5 (20.2) 112 (114) 72.6 (55.3) 55.6 (55.3) 77.2 (77.8)
1.2 24.5 (25.1) 12.2 (12.7) 9.14 (9.62) 12.1 (12.6) 93.4 (93.1) 54.7 (42.0) 42.1 (42.0) 56.5 (56.6)
1.6 15.9 (16.0) 8.36 (8.76) 6.27 (6.71) 8.25 (8.72) 80.0 (80.5) 43.2 (33.3) 32.9 (33.3) 43.0 (43.6)
2.0 11.6 (12.0) 5.91 (6.33) 4.69 (5.22) 6.15 (6.65) 69.4 (70.3) 35.0 (27.3) 26.8 (27.3) 33.6 (34.4)

Recall that the original PLR chart discussed by Li, Wang, and Yeh (2013) was constructed on the sample covariance
matrices. Therefore, in the following, we compare the performance of the original PLR chart with that of the MaxNorm chart
with λ = 1 in (2). Again let ρ ∈ {0.05, 0.20, 1.00} and � change from 0.8 to 2.0 in steps of 0.4. Note that it requires n ≥ p
in the PLR chart. Therefore, we consider the simulations with p ∈ {5, 10} when n = 20 and p ∈ {5, 30} when n = 50.
Corresponding results are recorded in Tables 7 and 8. The results reflect the same facts we have discussed above. The value
of ρ plays an important role in determining the performance of the PLR chart. Its impact can be easily observed in the cases
of �OCj , j ∈ {3, 4}. In addition, the MaxNorm chart always performs better than the PLR chart with an improper ρ and in
some cases outperforms the PLR chart at its peak among a grid value of ρ’s. We thus conclude that the advantage of the
MaxNorm chart in real applications is valid on the whole.

In the above simulations, we set λ = 0.1 for all the cases. To verify that the relative performance of these control charts
does not change with the value of λ, we further evaluate the performance of the MEWMC-based PLR chart, the HMT chart
and the MaxNorm chart with λ ∈ {0.1, 0.2, 0.3} when p = 10 and n = 20. The simulation result is presented in Tables 9
and 10. It indicates that, though the absolute value of ARL1 of each control chart changes with the value of λ, the relative
performance is robust and interrelated to the smoothing parameter. Also, the findings from above simulations are still valid
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Table 11. CTG data-set.

Code Feature Sample 1 Sample 2 Sample 3 · · ·

LB Foetal heart rate (FHR) baseline (beats per minute) 121 130 149 · · ·
AC # of accelerations per second 0.000 0.006 0.000 · · ·
FM # of foetal movements per second 0.001 0.408 0.000 · · ·
UC # of uterine contractions per second 0.004 0.004 0.005 · · ·
DL # of light decelerations per second 0.010 0.005 0.000 · · ·
DS # of severe decelerations per second 0.001 0.000 0.000 · · ·
DP # of prolonged decelerations per second 0.000 0.001 0.000 · · ·
ASTV Percentage of time with abnormal short-term variability 66 21 63 · · ·
MSTV Mean value of short-term variability 2.1 2.3 0.4 · · ·
ALTV Percentage of time with abnormal long-term variability 0 0 65 · · ·
MLTV Mean value of long-term variability 6.4 7.9 4.6 · · ·
Width Width of FHR histogram 105 107 12 · · ·
Min Minimum of FHR histogram 55 67 146 · · ·
Max Maximum of FHR histogram 160 174 158 · · ·
Nmax # of histogram peaks 7 7 1 · · ·
Nzeros # of histogram zeros 0 0 0 · · ·
Mode Histogram mode 67 143 153 · · ·
Mean Histogram mean 85 125 153 · · ·
Median Histogram median 92 135 155 · · ·
Variance Histogram variance 109 76 0 · · ·
Tendency Histogram tendency -1 0 1 · · ·
NSP Foetal state class code (N=normal; S=suspect; P=pathologic) P N S · · ·

when different λ’s are applied. Therefore, we can conclude that the relative performance of the proposed MaxNorm chart,
compared with those of the other control charts, is robust against different value of λ and thus the conclusions deduced from
the above simulations are adaptive to various cases.

4. An example from the health care industry

In this section, the proposed MaxNorm chart is demonstrated by applying it to an example from the health care industry. In
medicine, the cardiotocogram (CTG) is a record of the foetal heart rate (FHR) and uterine contraction (UC) features over
time (Cazares et al. 2001).

The observed data-set contains a total of 2126 vector observations, and is publicly available in the UC Irvine Machine
Learning Repository1. For each observation, as shown in Table 11, there are 21 real measurements in all. A categorical label,
“NSP” (N=normal; S=suspect; P=pathologic), indicating the foetal state is also provided in this data-set. Among all the vector
observations, 1655 observations are classified as normal and 295 as suspect.

If the foetal state changes from normal to suspect, the mean vector and the covariance matrix of those measurements will
change accordingly. At present, the foetal state is usually determined by expert obstetricians. But diagnosis and treatment
could be expedited if the changes could be detected automatically as soon as they occur. Since we are interested in the
monitoring of the covariance matrix, the goal of the data analysis is to model and monitor the correlations among different
measurements on the CTG. The mean vectors under various foetal states are assumed to be known.

To illustrate the detection, the 1655 observations that are classified as normal are used as the historical reference sample
to estimate the covariance matrix �̂ I in Phase I. In Phase II, the 295 observations that are classified as suspect are treated
as the sample for testing and the mean vector in Phase II, μ̂I I , is calculated. Then the 295 observations can accordingly be
standardised by the μ̂I I and �̂ I . After the standardisation, we artificially assume that the individual “suspect" observations
are monitored sequentially from the beginning. Moreover, we set λ = 0.1 and the IC ARL to 200. In addition to the MaxNorm
chart, only the HMT chart is applied in this example for a comparison. The LMEWMC chart and the MEWMC-based PLR
chart are not included because that the covariance matrix �̂ I I in Phase II is considered to be unknown beforehand in this
example and thus the regularisation parameters in these two control charts cannot be determined accordingly.

Before the monitoring, the standardised observations in Phase I are investigated and found that they do not follow
the multivariate normal distribution. Therefore, to determine the control limits, we calculate the charting statistics by
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randomly extracting the standardised observation in Phase I with replacement, instead of randomly generating variables
from a multivariate normal distribution. Through this procedure, the control limits for TtMaxNorm and TtHMT are determined
to be 0.5215 and 52.50, respectively. In Phase II, to alleviate the effect the order of the incoming data streams might have,
a bootstrap type testing procedure is considered. That is, a random sample of size 295 is drawn from the 295 standardised
observations labelled “suspect” without replacement. Then both charts are applied to this random example and the run lengths
are recorded. This procedure is repeated 100, 000 times and the resulting ARL1’s are found to be 35.25 and 79.28 for the
MaxNorm chart and the HMT chart respectively.

After the detection, we look back to investigate the reason that the MaxNorm chart significantly outperforms the HMT
chart in this real example. Note that we have assumed that � I = I p×p and standardised all observations in this example.
Therefore, we compare the following �̂ I I , derived from the 295 standardised observations labelled “suspect”, with I p×p.
Obviously, in �̂ I I , there are only a small part of the elements that are significantly different from the expected values, 0
for the off-diagonal elements and 1 for the diagonal elements. Recall that in Section 3, we have shown that the proposed
MaxNorm chart is more sensitive when the dimensionality/the degree of sparsity is high. The results in this section certainly
confirm this.

� I I =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.9 0.1 0.0 0.0 0.0 0.1 −0.1 0.0 −0.2 −0.1 0.2 0.1 −0.1 0.0 −0.1 0.0 −0.2 0.1 −0.1 0.2 0.0
0.1 0.5 0.0 −0.4 0.2 0.0 0.9 0.0 0.0 0.0 0.0 −0.3 0.0 −0.2 0.0 −0.1 −0.1 −0.2 −0.3 0.1 0.4
0.0 0.0 1.3 0.0 −0.1 0.0 −0.1 0.1 0.1 0.0 0.2 0.0 0.0 0.0 0.1 −0.1 −0.1 −0.1 −0.1 0.1 −0.1
0.0 −0.4 0.0 1.4 −0.3 0.0 −0.5 0.0 −0.2 −0.1 0.1 0.1 0.0 0.1 0.2 0.1 0.0 0.1 0.4 0.1 −0.2
0.0 0.2 −0.1 −0.3 0.5 −0.1 0.2 0.1 −0.1 0.0 −0.3 −0.1 −0.1 −0.1 −0.1 −0.1 0.0 0.0 −0.2 −0.1 0.0
0.1 0.0 0.0 0.0 −0.1 0.5 0.1 0.0 0.2 0.1 −0.1 −0.2 0.2 0.0 −0.1 0.1 0.0 0.1 −0.1 0.1 0.1

−0.1 0.9 −0.1 −0.5 0.2 0.1 3.4 −0.1 0.2 0.1 −0.3 −0.1 −0.1 −0.2 0.1 −0.3 0.0 −0.1 −0.2 −0.2 1.0
0.0 0.0 0.1 0.0 0.1 0.0 −0.1 0.4 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.2 0.1 0.0 0.1 0.0 0.0

−0.2 0.0 0.1 −0.2 −0.1 0.2 0.2 0.1 0.6 0.2 −0.4 −0.3 0.3 0.1 0.0 0.0 0.2 0.1 0.1 −0.2 0.2
−0.1 0.0 0.0 −0.1 0.0 0.1 0.1 0.0 0.2 0.1 −0.3 0.0 0.1 0.0 0.0 0.0 0.2 0.0 0.0 −0.2 0.0
0.2 0.0 0.2 0.1 −0.3 −0.1 −0.3 0.0 −0.4 −0.3 1.8 0.2 −0.1 0.1 0.3 0.0 −0.3 −0.3 0.0 0.6 0.0
0.1 −0.3 0.0 0.1 −0.1 −0.2 −0.1 0.0 −0.3 0.0 0.2 0.8 −0.6 0.2 0.1 0.1 0.0 0.1 −0.1 −0.1 −0.2

−0.1 0.0 0.0 0.0 −0.1 0.2 −0.1 0.0 0.3 0.1 −0.1 −0.6 0.9 0.3 0.0 0.1 0.1 −0.1 0.1 0.1 0.1
0.0 −0.2 0.0 0.1 −0.1 0.0 −0.2 0.1 0.1 0.0 0.1 0.2 0.3 0.5 0.1 0.1 0.1 0.0 .1 0.0 −0.2

−0.1 0.0 0.1 0.2 −0.1 −0.1 0.1 0.0 0.0 0.0 0.3 0.1 0.0 0.1 1.0 0.2 0.0 −0.1 0.1 0.1 0.1
0.0 −0.1 −0.1 0.1 −0.1 0.1 −0.3 0.2 0.0 0.0 0.0 0.1 0.1 0.1 0.2 1.2 0.0 0.0 0.0 0.2 −0.1

−0.2 −0.1 −0.1 0.0 0.0 0.0 0.0 0.1 0.2 0.2 −0.3 0.0 0.1 0.1 0.0 0.0 0.7 0.0 0.2 −0.4 0.0
0.1 −0.2 −0.1 0.1 0.0 0.1 −0.1 0.0 0.1 0.0 −0.3 0.1 −0.1 0.0 −0.1 0.0 0.0 0.4 0.1 −0.1 0.0

−0.1 −0.3 −0.1 0.4 −0.2 −0.1 −0.2 0.1 0.1 0.0 0.0 −0.1 0.1 0.1 0.1 0.0 0.2 0.1 0.7 0.0 0.0
0.2 0.1 0.1 0.1 −0.1 0.1 −0.2 0.0 −0.2 −0.2 0.6 −0.1 0.1 0.0 0.1 0.2 −0.4 −0.1 0.0 0.7 0.1
0.0 0.4 −0.1 −0.2 0.0 0.1 1.0 0.0 0.2 0.0 0.0 −0.2 0.1 −0.2 0.1 −0.1 0.0 0.0 0.0 0.1 1.5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

5. Conclusion

As mentioned in Sections 1 and 3, Hawkins and Maboudou-Tchao (2008) proposed a chart based on MEWMC (i.e. the HMT
chart) that is particularly effective when shifts occur in the majority elements. However, its performance is disappointing
when the shifts are characterised by sparsity. With the consideration of sparsity, a LMEWMC chart was developed particularly
for the cases with individual observations (Yeh, Li, and Wang 2012). And later, a PLR chart based on the sample covariance
matrices was proposed by Li, Wang, and Yeh (2013) for the more general cases with the subgroup size n ≥ p, where p
denotes the dimensionality. Both the LMEWMC chart and the MEWMC-based PLR chart, which is derived from the original
PLR chart, perform better than the HMT chart in most cases characterised by sparsity. However, their performance relies
heavily on the regularisation parameter ρ, which is difficult to determine without foreknowledge of the specific OC covariance
matrix. Therefore, an insurmountable obstacle exists in the applications of the LMEWMC and the MEWMC-based PLR
charts.

To overcome these problems, a new multivariate control chart based on the MEWMC, termed “the MaxNorm chart”, is
proposed in this study. Note that a modified MaxNorm chart based on the sample covariance matrices can be easily derived
with the same idea. Composing the charting statistic with a L2 norm and a L∞ norm, the proposed chart is able to detect
various shifts in the covariance matrix satisfactorily, as demonstrated through simulation studies. A real example from the
health care industry further shows that the proposed MaxNorm chart can also work well in applications.

In this study, we consider, in particular, the monitoring of the covariance matrix and assume that the mean vector is
constant and known. In practice, however, the mean vector rarely stays the same and thus the impact of the mean shifts
should be investigated. Then, according to how the mean shifts affect the shift detection in the covariance matrix, a single
chart can be developed in a future study for simultaneously monitoring the mean vector and the covariance matrix. Related
problems have been studied by several researchers, including Chen, Cheng, and Xie (2005), Zhang, Zou, and Wang (2009),
and Zhang, Li, and Wang (2010). Moreover, notice that the observations are usually assumed to come from a multivariate
normal process in MSPC. But when that is not the case, a robust multivariate control chart for monitoring the mean vector
and/or the covariance matrix would be needed.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

eb
ra

sk
a,

 L
in

co
ln

] 
at

 2
3:

47
 0

2 
A

pr
il 

20
15

 



International Journal of Production Research 2849

Acknowledgements
The authors would like to thank the Editor, Associate Editor and anonymous referees for their many helpful comments that have resulted
in significant improvements to this paper.

Funding
Fugee Tsung’s research was supported by RGC Competitive Earmarked Research (Grants 620010 and 619612). Changliang Zou’s research
was supported by National Natural Science Foundation of China (Grants 11101306, 11001138, and 70931004), Foundation for the
Author of National Excellent Doctoral Dissertation of PR China (Grant H0512101), and New Century Excellent Talents in University
(Grant NCET-12-0276).

Note
1. http://archive.ics.uci.edu/ml/datasets/Cardiotocography

References

Alfaro, E., and J. L. Alfaro. 2009. “A Boosting Approach for Understanding Out-of-control Signals in Multivariate Control Charts.”
International Journal of Production Research 47 (24): 6821–6834.

Alt, F. B., 1984. “Multivariate Quality Control.” In The Encyclopedia of Statistical Sciences, edited by S. Kotz, N.L., Johnson, and C.R.
Read, 110–122. New York, NY: John Wiley.

Bersimis, S., S. Psarakis, and J. Panaretos. 2007. “Multivariate Statistical Process Control Charts: A Overview.” Quality and Reliability
Engineering International 23 (5): 517–543.

Capizzi, G., and G. Masarotto. 2011. “A Least Angle Regression Control Chart for Multidimensional Data.” Technometrics 53 (3): 285–296.
Cazares, S., L. Tarassenko, L. Impey, M. Moulden, and C. W. G. Redman. 2001. Automated Identification of Abnormal Cardiotocograms

using Neural Network Visualization Techniques. Engineering in Medicine and Biology Society. Proceedings of the 23rd Annual
International Conference of the IEEE, 2, 1629–1632.

Chen, G., S. W. Cheng, and H. Xie. 2005. “A New Multivariate Control Chart for Monitoring Both Location and Dispersion.”
Communications in Statistics - Simulation and Computation 34 (1): 203–217.

Du, S., J. Lv, and L. Xi. 2012. “On-line Classifying Process Mean Shifts in Multivariate Control Charts Based on Multiclass Support
Vector Machines.” International Journal of Production Research 50 (22): 6288–6310.

Hawkins, D. M., and E. M. Maboudou-Tchao. 2008. “Multivariate Exponentially Weighted Moving Covariance Matrix.” Technometrics
50 (2): 155–166.

Huwang, L., A. B. Yeh, and C.-W. Wu. 2007. “Monitoring Multivariate Process Variability for Individual Observations.” Journal of Quality
Technology 39 (3): 258–278.

John, S. 1971. “Some Optimal Multivariate Tests.” Biometrika 58 (1): 123–127.
Li, B., K. Wang, and A. B. Yeh. 2013. “Monitoring the Covariance Matrix Via Penalized Likelihood Estimation.” IIE Transactions on

Quality and Reliability Engineering 45 : 132–146.
Rothman, A. J., P. J. Bickel, E. Levina, and J. Zhu. 2008. “Sparse Permutation Invariant Covariance Estimation.” Electronic Journal of

Statistics 2 : 494–515.
Stoumbos, Z. G., M. R. Reynolds, T. P. Ryan, and W. H. Woodall. 2000. “The State of Statistical Process Control As We Proceed into the

21st Century.” Journal of the American Statistical Association 95 (451): 992–998.
Wang, K., and W. Jiang. 2009. “High-dimensional Process Monitoring and Fault Isolation Via Variable Selection.” Journal of Quality

Technology 41 (3): 247–258.
Woodall, W. H., and D. C. Montgomery. 1999. “Research Issues and Ideas in Statistical Process Control.” Journal of Quality Technology

31 (4): 376–386.
Yeh, A. B., L. Huwang, and C.-W. Wu. 2005. “A Multivariate EWMA Control Chart for Monitoring Process Variability with Individual

Observations.” IIE Transactions on Quality and Reliability Engineering 37 (11): 1023–1035.
Yeh, A. B., L. Huwang, and Y.-F. Wu. 2004. “A Likelihood Ratio Based EWMA Control Chart for Monitoring Variability of Multivariate

Normal Processes.” IIE Transactions on Quality and Reliability Engineering 36 (9): 865–879.
Yeh, A. B., B. Li, and K. Wang. 2012. “Monitoring Multivariate Process Variability with Individual Observations Via Penalised Likelihood

Estimation.” International Journal of Production Research 50 (22): 6624–6638.
Yeh, A. B., D. K.-J. Lin, and R. N. McGrath. 2006. “Multivariate Control Charts for Monitoring Covariance Matrix: A Review.” Quality

Technology and Quantitative Management 3 (4): 415–436.
Zhang, J., Z. Li, and Z. Wang. 2010. “A Multivariate Control Chart for Simultaneously Monitoring Process Mean and Variability.”

Computational Statistics and Data Analysis 54 (10): 2244–2252.
Zhang, J., C. Zou, and Z. Wang. 2009. “A Control Chart Based on Likelihood Ratio Test for Monitoring Process Mean and Variability.”

Quality and Reliability Engineering International 26 (1): 63–73.
Zou, C., X. Ning, and F. Tsung. 2012. “LASSO-Based Multivariate Linear Profile Monitoring.” Annals of Operations Research 192 (1):

3–19.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

eb
ra

sk
a,

 L
in

co
ln

] 
at

 2
3:

47
 0

2 
A

pr
il 

20
15

 



2850 X. Shen et al.

Zou, C., and P. Qiu. 2009. “Multivariate Statistical Process Control Using LASSO.” Journal of the American Statistical Association 104
(488): 1586–1596.

Appendix 1. OC covariance matrices
The seven-specified OC covariance matrices, denoted by �OCj ( j ∈ {1, 2, . . . , 7}), are defined as follows.

�OC1 = (1 + δ) × I p×p, �OC2 =

⎛
⎜⎜⎜⎜⎝

1 + δ 0 . . . 0

0 1
. . .

...
...

. . .
. . . 0

0 . . . 0 1

⎞
⎟⎟⎟⎟⎠

p×p

,

�OC3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 δ δ δ δ
δ 1 δ δ δ
δ δ 1 δ δ 0
δ δ δ 1 δ
δ δ δ δ 1

1

0
. . .

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

p×p

, �OC4 =

⎛
⎜⎜⎜⎜⎝

1 δ
δ 1 0

1

0
. . .

1

⎞
⎟⎟⎟⎟⎠

p×p

,

�OC5 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 + δ δ δ
δ 1 + δ δ 0
δ δ 1 + δ

1

0
. . .

1

⎞
⎟⎟⎟⎟⎟⎟⎠

p×p

, �OC6 =

⎛
⎜⎜⎜⎜⎜⎝

1 + δ2 δ

δ 1 + δ2 0
1

0
. . .

1

⎞
⎟⎟⎟⎟⎟⎠

p×p

,

�OC7 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + δ δ
δ 1 + δ 0

1
. . .

0 1
1 + δ δ

δ 1 + δ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

p×p

.
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